
An Introduction to Perl6

1
Tuesday, 6 September 2011

Perl 6 is more than simply a rewrite of Perl 5.

2
Tuesday, 6 September 2011

By separating the parsing from the
compilation and the runtime, Perl 6 opens
the doors for multiple languages to
cooperate.

3
Tuesday, 6 September 2011

You'll be able to write your program in Perl
6, Perl 5, TCL, Python, or any other
language for which there is a parser.
Interchangable runtime engines let you
interpret your bytecode or convert it to
something else (e.g., Java, C, or even back
to Perl).

4
Tuesday, 6 September 2011

What is in Perl6 ?
Multimethods, coroutines, continuations, currying, signatures, captures,
exceptions
Powerful yet convenient object-oriented programming, generics, roles
Functional programming primitives, {lazy and eager} evaluation,
junctions, autothreading, hyperoperators (vector operators)
Definable grammars for {pattern matching and generalized string
processing}, with many other powerful extensions
Advanced introspection and meta-programming
{Extensible and overridable} {Perl 6 primitives and Perl 6 grammar},
language-level macros
Module aliasing and versioning, optional static/gradual typing
Full Unicode processing support
Garbage collection
Greatly-improved foreign function interface
Optional Typing System

5
Tuesday, 6 September 2011

Getting Perl6

Current Perl 6 distribution is Rakudo Star http://rakudo.org
Since Rakudo is under rapid development, potential developers should
download Rakudo directly from github and build from there:

git clone git://github.com/rakudo/rakudo.git

cd rakudo

perl Configure.pl --gen-parrot

make

make install

6
Tuesday, 6 September 2011

http://rakudo.org
http://rakudo.org

Strings

7

Strings are surrounded by double quotes (in which case they are interpolating), or with single
quotes.

Backslash escapes work just like in Perl 5.

However the interpolation rules have changed a bit. The following things interpolate

 my $scalar = 6;
 my @array = 1, 2, 3;
 say "Perl $scalar"; # 'Perl 6'
 say "An @array[]"; # 'An 1 2 3', a so-called "Zen slice"
 say "@array[1]"; # '2'
 say "Code: { $scalar * 2 }" # 'Code: 12'

Arrays and hashes only interpolate if followed by an index (or a method call that ends in
parenthesis, like"some $obj.method()"), empty indexes interpolate the whole data
structure.

A block in curly braces is executed as code, and the result is interpolated.

Tuesday, 6 September 2011

Arrays

8

Arrays variables still begin with the @ sigil. And they always do, even when accessing stored
items, ie. when an index is present.

 my @a = 5, 1, 2; # no parens needed anymore
 say @a[0]; # yes, it starts with @
 say @a[0, 2]; # slices also work

Lists are constructed with the Comma operator. 1, is a list, (1) isn't.

Since everything is an object, you can call methods on arrays:

 my @b = @a.sort;
 @b.elems; # number of items
 if @b > 2 { say "yes" } # still works
 @b.end # number of last index. Replaces
$#array
 my @c = @b.map({$_ * 2 }); # map is also a method, yes

There is a short form for the old qw/../ quoting construct:

 my @methods = <shift unshift push pop end delete sort map>;

Tuesday, 6 September 2011

Hashes

9

While Perl 5 hashes are even sized lists when viewed in list context, Perl 6 hashes
are lists of pairs in that context.
Pairs are also used for other things, like named arguments for subroutines.
Just like with arrays the sigil stays invariant when you index it. And hashes also
have methods that you can call on them.
 my %drinks =
 France => 'Wine',
 Bavaria => 'Beer',
 USA => 'Coke';

 say "The people in France love ", %drinks{'France'};
 my @countries = %drinks.keys.sort;
Note that when you access hash elements with %hash{...}, the key is not
automatically quoted like in Perl 5. So %hash{foo} doesn't access index "foo", but
calls the function foo(). The auto quoting isn't gone, it just has a different syntax:

 say %drinks<Bavaria>;

Tuesday, 6 September 2011

Types

10

Perl 6 has types.
Everything is an object in some way, and has a type.
Variables can have type constraints, but they don't need to have one.

There are some basic types that you should know about:
 'a string' # Str
 2 # Int
 3.14 # Rat (rational number)
 (1, 2, 3) # Seq

All "normal" built-in types begin with an upper case letter.
All "normal" types inherit from Any, and absolutely everything inherits from Mu.

You can restrict the type of values that a variable can hold by adding the type name to
the declaration.
 my Numeric $x = 3.4;
 my Int @a = 1, 2, 3;

It is an error to try to put a value into a variable that is of a "wrong" type (ie
neither the specified type nor a subtype).
A type declaration on an Array applies to its contents, so my Str @s is an array that
can only contain strings.

Some types stand for a whole family of more specific types, for example integers (type
Int), rationals (typeRat) and floating-point numbers (type Num) conform to the Numeric
type.

Tuesday, 6 September 2011

Introspection

11

You can learn about the direct type of a
thing by calling its .WHAT method.

 say "foo".WHAT; # Str()

However if you want to check if something is
of a specific type, there is a different
way, which also takes inheritance into
account and is therefore recommended:
 if $x ~~ Int {
 say 'Variable $x contains an
integer';
 }

Tuesday, 6 September 2011

Basic Control Structures

12

Most Perl 5 control structures are quite similar in Perl 6.
The biggest visual difference is that you don't need a pair of
parenthesis after if, while, for etc.
In fact you are discouraged from using parenthesis around the
conditions. The reason is that any identifier followed immediately
(ie. without whitespace) by an opening parenthesis is parsed as a
subroutine call, soif($x < 3)</c tries to call a function named if.
While a space after the if fixes that, it is safer to just omit the
parens.
Branches
if is mostly unchanged, you can still add elsif and else branches.
unless is still there, but no elsebranch is allowed after unless.
 if $sheep == 0 {
 say "How boring";
 } elsif $sheep == 1 {
 say "One lonely sheep";
 } else {
 say "A herd, how lovely!";
 }
You can also use if and unless as a statement modifier, i.e. after a
statement:
 say "you won" if $answer == 42;

Tuesday, 6 September 2011

http://perlgeek.de/en/article/5-to-6#___top
http://perlgeek.de/en/article/5-to-6#___top

Loops

13

You can manipulate loops with next and last just like in Perl 5.
The for-Loop is now only used to iterate over lists. By default the topic variable
$_ is used, unless an explicit loop variable is given.
 for 1..10 -> $x {
 say $x;
 }
The -> $x { ... } thing is called a "pointy block" and is something like an
anonymous sub, or a lambda in lisp.
You can also use more than one loop variable:

 for 0..5 -> $even, $odd {
 say "Even: $even \t Odd: $odd";
 }
This is also how you iterate over hashes:

 my %h = a => 1, b => 2, c => 3;
 for %h.kv -> $key, $value {
 say "$key: $value";
 }
The C-style for-loop is now called loop (and the only looping construct that
requires parenthesis):

 loop (my $x = 1; $x < 100; $x = $x**2) {
 say $x;
 }

Tuesday, 6 September 2011

Subroutines & Signatures

14

Subroutines are declared with the sub key word, and can have a list of formal parameters, just
like in C, Java and most other languages. Optionally these parameters can have type
constraints.
Parameters are read-only by default. That can be changed with so-called "traits":
 sub try-to-reset($bar) {
 $bar = 2; # forbidden
 }

 my $x = 2;
 sub reset($bar is rw) {
 $bar = 0; # allowed
 }
 reset($x); say $x; # 0

 sub quox($bar is copy){
 $bar = 3;
 }
 quox($x); say $x # still 0

Parameters can be made optional by adding a question mark ? after them, or by supplying a
default value.
 sub foo($x, $y?) {
 if $y.defined {
 say "Second parameter was supplied and defined";
 }
 }

 sub bar($x, $y = 2 * $x) {
 ...
 }

Tuesday, 6 September 2011

Named Parameters

15

To define a named parameter, you simply put a colon :
before the parameter in the signature list:

 sub area(:$width, :$height) {
 return $width * $height;
 }
 area(width => 2, height => 3);
 area(height => 3, width => 2); # the same
 area(:height(3), :width(2)); # the same

In these the variable name is also used as the name of
the parameter. You can use a different name, though:

 sub area(:width($w), :height($h)){
 return $w * $h;
 }
 area(width => 2, height => 3);

Tuesday, 6 September 2011

Slurpy Parameters

16

Just because you give your sub a signature doesn't mean you have
to know the number of arguments in advance. You can define so-
called slurpy parameters (after all the regular ones) which use up
any remaining arguments:
 sub tail ($first, *@rest){
 say "First: $first";
 say "Rest: @rest[]";
 }
 tail(1, 2, 3, 4); # "First: 1\nRest: 2 3 4\n"
Named slurpy parameters are declared by using an asterisk in front
of a hash parameter:
 sub order-meal($name, *%extras) {
 say "I'd like some $name, but with a few modifications:";
 say %extras.keys.join(', ');
 }

 order-meal('beef steak', :vegetarian, :well-done);

Tuesday, 6 September 2011

Interpolation

17

By default arrays aren't interpolated in argument lists, so
unlike in Perl 5 you can write something like this:

 sub a($scalar1, @list, $scalar2){
 say $scalar2;
 }

 my @list = "foo", "bar";
 a(1, @list, 2); # 2

That also means that by default you can't use a list as an
argument list:

 my @indexes = 1, 4;
 say "abc".substr(@indexes) # doesn't do what you want

You can achieve the desired behavior with a prefix |
 say "abcdefgh".substr(|@indexes) # bcde

Tuesday, 6 September 2011

Multi Subs

18

You can actually define multiple subs with the same name but with
different parameter lists:
 multi sub my_substr($str) { ... } # 1
 multi sub my_substr($str, $start) { ... } # 2
 multi sub my_substr($str, $start, $end) { ... } # 3
 multi sub my_substr($str, $start, $end, $subst) { ... } # 4

Now whenever you call such a sub, the one with the matching
parameter list will be chosen.
The multis don't have to differ in the arity (ie number of
arguments), they can also differ in the type of the parameters:

 multi sub frob(Str $s) { say "Frobbing String $s" }
 multi sub frob(Int $i) { say "Frobbing Integer $i" }

 frob("x") # Frobbing String x
 frob(2) # Frobbing Integer 2

Tuesday, 6 September 2011

Objects and Classes

19

Perl 6 has an object model that is much more fleshed out than the
Perl 5 one.
It has keywords for creating classes, roles, attributes and
methods, and has encapsulated private attributes and methods. In
fact it's much closer to the Moose Perl 5 module (which was
inspired by the Perl 6 object system).

There are two ways to declare classes
 class ClassName;
 # class definition goes here

The first one begins with class ClassName; and stretches to the
end of the file. In the second one the class name is followed by a
block, and all that is inside the blocks is considered to be the
class definition.

 class YourClass {
 # class definition goes here
 }
 # more classes or other code here

Tuesday, 6 September 2011

Methods

20

Methods are declared with the method key word.
Inside the method you can use the self keyword to refer to the
object on which the method is called (the invocant).

You can also give the invocant a different name by adding a first
parameter to the signature list and append a colon : to it.
Public methods can be called with the syntax $object.method if it
takes no arguments, and $object.method(@args) or $object.method:
@args if it takes arguments.

 class SomeClass {
 # these two methods do nothing but return the invocant
 method foo {
 return self;
 }
 method bar(SomeClass $s:) {
 return $s;
 }
 }

Tuesday, 6 September 2011

Methods (continued)

21

 my SomeClass $x .= new;
 $x.foo.bar # same as $x

(The my SomeClass $x .= new is actually a shorthand for my
SomeClass $x .= SomeClass.new. It works because the type
declaration fills the variable with a "typo object" ofSomeClass,
which is an object representing the class.)
Methods can also take additional arguments just like subs.
Private methods can be declared with method !methodname, and
called withself!method_name.

 class Foo {
 method !private($frob) {
 return "Frobbed $frob";
 }

 method public {
 say self!private("foo");
 }
 }
Private methods can't be called from outside the class.

Tuesday, 6 September 2011

Attributes

22

Attributes are declared with the has key word, and have a "twigil", that is a
special character after the sigil. For private attributes that's a bang !, for
public attributes it's the dot .. Public attributes are just private attributes with
a public accessor. So if you want to modify the attribute, you need to use the !
sigil to access the actual attribute, and not the accessor (unless the accessor is
marked is rw).
 class SomeClass {
 has $!a;
 has $.b;
 has $.c is rw;

 method set_stuff {
 $!a = 1; # ok, writing to attribute from within the clas
 $!b = 2; # same
 $.b = 3; # ERROR, can't write to ro-accessor
 }

 method do_stuff {
 # you can use the private name instead of the public one
 # $!b and $.b are really the same thing
 return $!a + $!b + $!c;
 }
 }
 my $x = SomeClass.new;
 say $x.a; # ERROR!
 say $x.b; # ok
 $x.b = 2; # ERROR!
 $x.c = 3; # ok

Tuesday, 6 September 2011

Inheritance

23

Inheritance is done through an is trait.
 class Foo is Bar {
 # class Foo inherits from class Bar
 ...
 }
All the usual inheritance rules apply - methods are first looked up on the direct
type, and if that fails, on the parent class (recursively). Likewise the type of a
child class is conforming to that of a parent class:

 class Bar { }
 class Foo is Bar { }
 my Bar $x = Foo.new(); # ok, since Foo ~~ Bar

In this example the type of $x is Bar, and it is allowed to assign an object of type
Foo to it, because "everyFoo is a Bar".
Classes can inherit from multiple other classes:

 class ArrayHash is Hash is Array {
 ...
 }

Though multiple inheritance also comes with multiple problems, and people usually
advise against it. Roles are often a safer choice.

Tuesday, 6 September 2011

Roles and Composition

24

In general the world isn't hierarchical, and thus sometimes it's hard to press
everything into an inheritance hierarchy.
Which is one of the reasons why Perl 6 has Roles.
Roles are quite similar to classes, except you can't create objects directly from
them, and that composition of multiple roles with the same method names generate
conflicts, instead of silently resolving to one of them, like multiple inheritance
does.
While classes are intended primarily for type conformance, roles are the primary
means for code reuse in Perl 6.

 role Paintable {
 has $.colour is rw;
 method paint { ... }
 }
 class Shape {
 method area { ... }
 }

 class Rectangle is Shape does Paintable {
 has $.width;
 has $.height;
 method area {
 $!width * $!height;
 }
 }

Tuesday, 6 September 2011

Contexts

25

When you write something like this
 $x = @a

in Perl 5, $x contains less information than @a - it contains only the number of
items in @a.
To preserve all information, you have to explicitly take a reference: $x = \@a.

In Perl 6 it's the other way round: by default you don't lose anything, the scalar
just stores the array. This was made possible by introducing a generic item context
(called scalar in Perl 5) and more specialized numeric, integer and string contexts.
Void and List context remain unchanged.

You can force contexts with special syntax.
 syntax context

 ~stuff String
 ?stuff Bool (logical)
 +stuff Numeric
 -stuff Numeric (also negates)
 $(stuff) Generic item context
 @(stuff) List context
 %(stuff) Hash context
 @@(stuff) Slice context

Tuesday, 6 September 2011

Slice Context

26

There's also a new context called slice context. It is
a list context in which sublists don't interpolate.

 @(<a b> Z <c d>) # <a c b d>
 @@(<a b> Z <c d>) # (['a', 'c'], ['b', 'd'])
This was introduced after the observation that many
built in list functions had two versions - one that
returned a flat list, and one that returned a list of
lists.

You can force slice context with @@(stuff).

Tuesday, 6 September 2011

Regexes (also called “rules”)

27

Regexes are one of the areas that has been improved and revamped most in Perl 6. We don't call them regular
expressions anymore because they are even less regular than they are in Perl 5.

There are three large changes and enhancements to the regexes

Syntax clean up
Many small changes make rules easier to write. For example the dot . matches any character now, the old
semantics (anything but newlines) can be achieved with \N.

Modifiers now go at the start of a regex, and non-capturing groups are [...], which are a lot easier to read and
write than the old (?:...).

Nested captures and match object
In Perl 5, a regex like this (a(b))(c) would put ab into $1, b into $2 and c into $3 upon successful match. This
has changed. Now $0 (enumeration starts at zero) contains ab, and $0[0]or $/[0][0] contains b. $1 holds c.
So each nesting level of parenthesis is reflected in a new nesting level in the result match object.

All the match variables are aliases into $/, which is the so-called Match object, and it actually contains a full
match tree.

Named regexes and grammars
You can declare regexes with names just like you can with subs and methods. You can refer to these inside other
rules with <name>. And you can put multiple regexes into grammars, which are just like classes and support
inheritance and composition

Tuesday, 6 September 2011

Syntax Clean up

28

Letter characters (ie underscore, digits and all Unicode letters) match literally, and have a special meaning (they are
metasyntactic) when escaped with a backslash. For all other characters it's the other way round - they are metasyntactic unless
escaped.

 literal metasyntactic

 a b 1 2 \a \b \1 \2

 * \: \. \? * : . ?

Not all metasyntactic tokens have a meaning (yet). It is illegal to use those without a defined meaning.

There is another way to escape strings in regexes: with quotes.

 m/'a literal text: $#@!!'/

The changed semantics of . has already been mentioned, and that [...] are now non-capturing groups. Char classes are <[...]>,
and negated char classes <-[...]>. ^ and $ always match begin and end of the string, to match begin and end of lines use ^^ and
$$.

This means that the /s and /m modifiers are gone. Modifiers are now given at the start of a regex, and are spelled as pairs.

 if "abc" ~~ m:i/B/ {

 say "Match";

 }

Modifiers have a short and a long form. The old /x modifier is now the default, i.e. white spaces are ignored

Tuesday, 6 September 2011

Syntax Clean up (cont’d)

29

 short long meaning

 :i :ignorecase ignore case (formerly /i)
 :m :ignoremark ignore marks (accents, diaeresis etc.)
 :g :global match as often as possible (/g)
 :s :sigspace Every white space in the regex matches
 (optional) white space
 :P5 :Perl5 Fall back to Perl 5 compatible regex syntax
 :4x :x(4) Match four times (works for other numbers as well)
 :3rd :nth(3) Third match
 :ov :overlap Like :g, but also consider overlapping matches
 :ex :exhaustive Match in all possible ways
 :ratchet Don't backtrack
The :sigspace needs a bit more explanation. It replace all whitespace in the pattern with <.ws> (that is it
calls the rule ws without keeping its result). You can override that rule. By default it matches one or more
white spaces if it's enclosed in word characters, and zero or more otherwise.

(There are more new modifiers, but probably not as important as the listed ones).

Tuesday, 6 September 2011

The Match Object

30

Every match generates a so-called match object, which is stored in the special
variable $/. It is a versatile thing. In boolean context it returns Bool::True if the
match succeeded. In string context it returns the matched string, when used as a list it
contains the positional captures, and when used as a hash it contains the named
captures. The .from and .to methods contains the first and last string positions of
the match.

 if 'abcdefg' ~~ m/(.(.)) (e | bla) $<foo> = (.) / {
 say $/[0][0]; # d
 say $/[0]; # cd
 say $/[1]; # e
 say $/<foo> # f
 }
$0, $1 etc are just aliases for $/[0], $/[1] etc. Likewise $/<x> and $/{'x'} are
aliased to $<x>.

Note that anything that you access via $/[...] and $/{...} is a match object (or a
list of Match objects) again. This allows you to build real parse trees with rules.

Tuesday, 6 September 2011

Named Regexes & Grammars

31

Regexes can either be used with the old style m/.../, or be declared like subs and methods.

 regex a { ... }
 token b { ... }
 rule c { ... }

The difference is that token implies the :ratchet modifier (which means no backtracking,
like a (?> ...) group around each part of the regex in perl 5), and rule implies
both :ratchet and:sigspace.

To call such a rule (we'll call them all rules, independently with which keyword they were
declared) you put the name in angle brackets: <a>. This implicitly anchors the sub rule to its
current position in the string, and stores the result in the match object in $/<a>, ie it's a
named capture. You can also call a rule without capturing its result by prefixing its name with a
dot: <.a>.

A grammar is a group of rules, just like a class (see the SYNOPSIS for an example).
Grammars can inherit, override rules and so on.

 grammar URL::HTTP is URL {
 token schema { 'http' }
 }

Tuesday, 6 September 2011

Comparing and Matching

32

 "ab" eq "ab" True
 "1.0" eq "1" False
 "a" == "b" True
 "1" == 1.0 True
 1 === 1 True
 [1, 2] === [1, 2] False
 $x = [1, 2];
 $x === $x True
 $x eqv $x True
 [1, 2] eqv [1, 2] True
 1.0 eqv 1 False

 'abc' ~~ m/a/ True
 'abc' ~~ Str True
 'abc' ~~ Int False
 Str ~~ Any True
 Str ~~ Num False
 1 ~~ 0..4 True
 -3 ~~ 0..4 False

Tuesday, 6 September 2011

Smart Matching

33

Perl 6 has a "compare everything" operator, called "smart match"
operator, and spelled ~~.
For immutable types it is a simple equality comparison. A smart match
against a type object checks for type conformance. A smart match
against a regex matches the regex. Matching a scalar against a
Range object checks if that scalar is included in the range.
There are other, more advanced forms of matching: for example you
can check if an argument list (Capture) fits to the parameter list
(Signature) of a subroutine, or apply file test operators (like -e in
Perl 5).
What you should remember is that any "does $x fit to $y?"-Question
will be formulated as a smart match in Perl 6.

Tuesday, 6 September 2011

Containers and Values

34

Perl 6 distinguishes between containers, and values that can be stored in containers.

A normal scalar variable is a container, and can have some properties like type
constraints, access constraints (for example it can be read only), and finally it can be
aliased to other containers.

Putting a value into a container is called assignment, and aliasing two containers is
called binding.

 my @a = 1, 2, 3;
 my Int $x = 4;
 @a[0] := $x; # now @a[0] and $x are the same variable
 @a[0] = 'Foo'; # Error 'Type check failed'

Types like Int and Str are immutable, ie the objects of these types can't be changed;
but you can still change the variables (the containers, that is) which hold these values:

 my $a = 1;
 $a = 2; # no surprise here

Binding can also be done at compile time with the ::= operator.

You can check if two things are bound together the =:= comparison operator.

Tuesday, 6 September 2011

Changes to Perl 5 Operators

35

All the numeric operators (+, -, /, *, **, %) remain unchanged.

Since |, ^ and & now construct junctions, the bit wise operators have a changed
syntax. They now contain a context prefix, so for example +| is bit wise OR with
numeric context, and ~^ is one's complement on a string. Bit shift operators changed
in the same way.

String concatenation is now ~, the dot . is used for method calls.

File tests are now formulated in Pair notation, Perl 5 -e is now :e. If something other
than $_ should be used as the file name, it can be supplied via $filename.IO
~~ :e.

The repetition operator x is now split into two operators: x replicates strings, xx lists.

The ternary operator, formerly $condition ? $true : $false, is now spelled
$condition ?? $true !! $false.

Comparison operators can now be chained, so you can write $a < $b < $c and it
does what you mean.

Tuesday, 6 September 2011

Laziness

36

In this case lazy means, that the evaluation is delayed as much as possible. When you write something
like@a := map BLOCK, @b, the block isn't executed at all. Only when you start to access items from @athe
map actually executes the block and fills @a as much as needed.

Note the use of binding instead of assignment: Assigning to an array might force eager evaluation (unless
the compiler knows the list is going to be infinite; the exact details of figuring this out are still subject to
change), binding never does.

Laziness allows you to deal with infinite lists: as long as you don't do anything to all of its arguments, they
take up only as much space as the items need that have already been evaluated.

There are pitfalls, though: determining the length of a list or sorting it kills laziness - if the list is infinite, it will
likely loop infinitely, or fail if the infiniteness can be detected.

In general all conversions to a scalar (like List.join) are eager, i.e. non-lazy.

Laziness prevents unnecessary computations, and can therefore boost performance while keeping code
simple.

When you read a file line by line in Perl 5, you don't use for (<HANDLE>) because it reads all the file into
memory, and only then starts iterating. With laziness that's not an issue:

 my $file = open '/etc/passwd';
 for $file.lines -> $line {
 say $line;
 }
Since $file.lines is a lazy list, the lines are only physically read from disk as needed (besides buffering,
of course).

Tuesday, 6 September 2011

gather/take

37

A very useful construct for creating lazy lists is gather { take }. It is used like this:

 my @list := gather {
 while True {
 # some computations;
 take $result;
 }
 }

gather BLOCK returns a lazy list. When items from @list are needed, the BLOCK is run until take is executed. take is just like
return, and all taken items are used to construct @list. When more items from @list are needed, the execution of the block is
resumed after take.

gather/take is dynamically scoped, so it is possible to call take outside of the lexical scope of thegather block:

 my @list = gather {
 for 1..10 {
 do_some_computation($_);
 }
 }

 sub do_some_computation($x) {
 take $x * ($x + 1);
 }
Note that gather can act on a single statement instead of a block too:

 my @list = gather for 1..10 {
 do_some_computation($_);
 }

Tuesday, 6 September 2011

gather/take

38

A very useful construct for creating lazy lists is gather { take }. It is used like this:

 my @list := gather {
 while True {
 # some computations;
 take $result;
 }
 }

gather BLOCK returns a lazy list. When items from @list are needed, the BLOCK is run until take is executed. take is just like
return, and all taken items are used to construct @list. When more items from @list are needed, the execution of the block is
resumed after take.

gather/take is dynamically scoped, so it is possible to call take outside of the lexical scope of thegather block:

 my @list = gather {
 for 1..10 {
 do_some_computation($_);
 }
 }

 sub do_some_computation($x) {
 take $x * ($x + 1);
 }
Note that gather can act on a single statement instead of a block too:

 my @list = gather for 1..10 {
 do_some_computation($_);
 }

Tuesday, 6 September 2011

Custom Operators

39

Operators are functions with unusual names, and a few additional properties like
precedence and associativity. Perl 6 usually follows the pattern term infix term,
where term can be optionally preceded by prefix operators and followed by postfix or
postcircumfix operators.

 1 + 1 infix
 +1 prefix
 $x++ postfix
 <a b c> circumfix
 @a[1] postcircumfix

Operator names are not limited to "special" characters, they can contain anything except
whitespace.

The long name of an operator is its type, followed by a colon and a string literal or list of
the symbol or symbols, for example infix:<+> is the the operator in 1+2. Another
example is postcircumfix:<[]>, which is the operator in @a[0].

With this knowledge you can already define new operators:

 multi sub prefix:<€> (Str $x) {
 2 * $x;
 }
 say €4; # 8

Tuesday, 6 September 2011

Precedence

40

In an expression like $a + $b * $c the infix:<*> operator has tighter
precedence than infix:<+>, which is why the expression is evaluated as
$a + ($b * $c).
The precedence of a new operator can be specified in comparison to to
existing operators:
 multi sub infix:<foo> is equiv(&infix:<+>) { ... }
 mutli sub infix:<bar> is tighter(&infix:<+>) { ... }
 mutli sub infix:<baz> is looser(&infix:<+>) { ... }

Tuesday, 6 September 2011

Accociativity

41

Most infix operators take only two arguments. In an expression like 1 / 2 /
4 the associativity of the operator decides the order of evaluation. The
infix:</> operator is left associative, so this expression is parsed as (1 /
2) / 4. for a right associative operator like infix:<**> (exponentiation) 2
** 2 ** 4 is parsed as 2 ** (2 ** 4).
Perl 6 has more associativities: none forbids chaining of operators of the
same precedence (for example 2 <=> 3 <=> 4 is forbidden), and
infix:<,> has list associativity. 1, 2, 3 is translated toinfix:<,>
(1; 2; 3). Finally there's the chain associativity: $a < $b < $c
translates to ($a < $b) && ($b < $c).
 multi sub infix:<foo> is tighter(&infix:<+>)
 is assoc('left')
 ($a, $b) {
 ...
 }

Tuesday, 6 September 2011

The MAIN subroutine

42

Calling subs and running a typical Unix program from the command line is visually very similar: you can have positional,
optional and named arguments.

You can benefit from it, because Perl 6 can process the command line for you, and turn it into a sub call. Your script is
normally executed (at which time it can munge the command line arguments stored in@*ARGS), and then the sub MAIN
is called, if it exists.

If the sub can't be called because the command line arguments don't match the formal parameters of theMAIN sub, an
automatically generated usage message is printed.

Command line options map to subroutine arguments like this:

 -name :name
 -name=value :name<value>

 # remember, <...> is like qw(...)
 --hackers=Larry,Damian :hackers<Larry Damian>

 --good_language :good_language
 --good_lang=Perl :good_lang<Perl>
 --bad_lang PHP :bad_lang<PHP>

 +stuff :!stuff
 +stuff=healty :stuff<healthy> but False
The $x = $obj but False means that $x is a copy of $obj, but gives Bool::False in boolean context.

So for simple (and some not quite simple) cases you don't need an external command line processor, but you can just
use sub MAIN for that.

Tuesday, 6 September 2011

Twigils

43

Calling subs and running a typical Unix program from the command line is visually very similar: you can have positional,
optional and named arguments.

You can benefit from it, because Perl 6 can process the command line for you, and turn it into a sub call. Your script is
normally executed (at which time it can munge the command line arguments stored in@*ARGS), and then the sub MAIN
is called, if it exists.

If the sub can't be called because the command line arguments don't match the formal parameters of theMAIN sub, an
automatically generated usage message is printed.

Command line options map to subroutine arguments like this:

 -name :name
 -name=value :name<value>

 # remember, <...> is like qw(...)
 --hackers=Larry,Damian :hackers<Larry Damian>

 --good_language :good_language
 --good_lang=Perl :good_lang<Perl>
 --bad_lang PHP :bad_lang<PHP>

 +stuff :!stuff
 +stuff=healty :stuff<healthy> but False
The $x = $obj but False means that $x is a copy of $obj, but gives Bool::False in boolean context.

So for simple (and some not quite simple) cases you don't need an external command line processor, but you can just
use sub MAIN for that.

Tuesday, 6 September 2011

Enums

44

Enums are versatile beasts. They are low-level classes that consist of an enumeration of constants,
typically integers or strings (but can be arbitrary).

These constants can act as subtypes, methods or normal values. They can be attached to an object
with the but operator, which "mixes" the enum into the value:

 my $x = $today but Day::Tue;
You can also use the type name of the Enum as a function, and supply the value as an argument:

 $x = $today but Day($weekday);
Afterwards that object has a method with the name of the enum type, here Day:

 say $x.Day; # 1
The value of first constant is 0, the next 1 and so on, unless you explicitly provide another value with
pair notation:

 Enum Hackers (:Larry<Perl>, :Guido<Python>, :Paul<Lisp>);
You can check if a specific value was mixed in by using the versatile smart match operator, or
with .does:

 if $today ~~ Day::Fri {
 say "Thank Christ it's Friday"
 }
 if $today.does(Fri) { ... }

Note that you can specify the name of the value only (like Fri) if that's unambiguous, if it's ambiguous
you have to provide the full name Day::Fri.

Tuesday, 6 September 2011

Unicode

45

Perl 5's Unicode model suffers from a big weakness: it uses the same type for binary and for text data. For example if your program
reads 512 bytes from a network socket, it is certainly a byte string. However when (still in Perl 5) you call uc on that string, it will be
treated as text. The recommended way is to decode that string first, but when a subroutine receives a string as an argument, it can
never surely know if it had been encoded or not, ie if it is to be treated as a blob or as a text.

Perl 6 on the other hand offers the type buf, which is just a collection of bytes, and Str, which is a collection of logical characters.

Logical character is still a vague term. To be more precise a Str is an object that can be viewed at different levels: Byte, Codepoint
(anything that the Unicode Consortium assigned a number to is a codepoint),Grapheme (things that visually appear as a character) and
CharLingua (language defined characters).

For example the string with the hex bytes 61 cc 80 consists of three bytes (obviously), but can also be viewed as being consisting of
two codepoints with the names LATIN SMALL LETTER A (U+0041) andCOMBINING GRAVE ACCENT (U+0300), or as one grapheme
that, if neither my blog software nor your browser kill it, looks like this: à.

So you can't simply ask for the length of a string, you have to ask for a specific length:

 $str.bytes;
 $str.codes;
 $str.graphs;
There's also method named chars, which returns the length in the current Unicode level (which can be set by a pragma like use
bytes, and which defaults to graphemes).

In Perl 5 you sometimes had the problem of accidentally concatenating byte strings and text strings. If you should ever suffer from that
problem in Perl 6, you can easily identify where it happens by overloading the concatenation operator:

 sub GLOBAL::infix:<~> is deep (Str $a, buf $b)|(buf $b, Str $a) {
 die "Can't concatenate text string «"
 ~ $a.encode("UTF-8")
 "» with byte string «$b»\n";
 }

Tuesday, 6 September 2011

Scoping

46

 for 1 .. 10 -> $a {
 # $a visible here
 }
 # $a not visible here

 while my $b = get_stuff() {
 # $b visible here
 }
 # $b still visible here

 my $c = 5;
 {
 my $c = $c;
 # $c is undef here
 }
 # $c is 5 here

 my $y;
 my $x = $y + 2 while $y = calc();
 # $x still visible

Tuesday, 6 September 2011

Lexical Scoping

47

Scoping in Perl 6 is quite similar to that of Perl 5. A Block introduces a new lexical scope.
A variable name is searched in the innermost lexical scope first, if it's not found it is then
searched for in the next outer scope and so on. Just like in Perl 5 a my variable is a proper
lexical variable, and an our declaration introduces a lexical alias for a package variable.

But there are subtle differences: variables are exactly visible in the rest of the block where
they are declared, variables declared in block headers (for example in the condition of a
while loop) are not limited to the block afterwards.

If you want to limit the scope, you can use formal parameters to the block:

 if calc() -> $result {
 # you can use $result here
 }
 # $result not visible here
Variables are visible immediately after they are declared, not at the end of the statement
as in Perl 5.

 my $x = ;
 ^^^^^
 $x visible here in Perl 6
 but not in Perl 5

Tuesday, 6 September 2011

Dynamic Scoping

48

The local adjective is now called temp, and if it's not
followed by an initialization the previous value of that
variable is used (not undef).
There's also a new kind of dynamically scoped variable
called a hypothetical variable. If the block is left with an
exception, then the previous value of the variable is
restored. If not, it is kept.

Tuesday, 6 September 2011

Context Variables

49

Some variables that are global in Perl 5 ($!, $_) are context variables in Perl
6, that is they are passed between dynamic scopes.
This solves an old Problem in Perl 5. In Perl 5 a DESTROY sub can be called
at a block exit, and accidentally change the value of a global variable, for
example one of the error variables:
 # Broken Perl 5 code here:
 sub DESTROY { eval { 1 }; }

 eval {
 my $x = bless {};
 die "Death\n";
 };
 print $@ if $@; # No output here
In Perl 6 this problem is avoided by not implicitly using global variables.
(In Perl 5.14 there is a workaround that protects $@ from being modified, thus
averting the most harm from this particular example.)

Tuesday, 6 September 2011

Pseudo-packages

50

If a variable is hidden by another lexical variable of the same name, it
can be accessed with the OUTER pseudo package
 my $x = 3;
 {
 my $x = 10;
 say $x; # 10
 say $OUTER::x; # 3
 say OUTER::<$x> # 3
 }
Likewise a function can access variables from its caller with the
CALLER and CONTEXT pseudo packages. The difference is that
CALLER only accesses the scope of the immediate caller, CONTEXT
works like UNIX environment variables (and should only be used
internally by the compiler for handling $_,$! and the like). To access
variables from the outer dynamic scope they must be declared with
is context.

Tuesday, 6 September 2011

Subset Types

51

Java programmers tend to think of a type as either a class or an interface (which is
something like a crippled class), but that view is too limited for Perl 6. A type is more
generally a constraint of what a values a container can constraint. The "classical"
constraint is it is an object of a class X or of a class that inherits from X. Perl 6 also has
constraints like the class or the object does role Y, or this piece of code returns true for
our object. The latter is the most general one, and is called a subset type:

 subset Even of Int where { $_ % 2 == 0 }
 # Even can now be used like every other type name

 my Even $x = 2;
 my Even $y = 3; # type missmatch error
(Try it out, Rakudo implements subset types already, but not yet mulit dispatch based
on subset types).

You can also use anonymous subtypes in signatures:

 sub foo (Int where { ... } $x) { ... }
 # or with the variable at the front:
 sub foo ($x of Int where { ... }) { ... }

Tuesday, 6 September 2011

Quoting and Parsing

52

Perl 5 had single quotes, double quotes and qw(...) (single quotes, splitted on whitespaces) as
well as the q(..) and qq(...) forms which are basically synonyms for single and double
quotes.

Perl 6 in turn defines a quote operator named Q that can take various modifiers. The :b
(backslash) modifier allows interpolation of backslash escape sequences like \n, the :s modifier
allows interpolation of scalar variables, :c allows the interpolation of closures ("1 + 2 = { 1 +
2 }") and so on, :w splits on words as qw/.../ does.

You can arbitrarily combine those modifiers. For example you might wish a form of qw/../ that
interpolates only scalars, but nothing else? No problem:

 my $stuff = "honey";
 my @list = Q :w :s/milk toast $stuff with\tfunny\nescapes/;
 say @list[*-1]; # prints with\nfunny\nescapes

Tuesday, 6 September 2011

Quoting

53

Here's a list of what modifiers are available, mostly stolen from S02 directly. All of these
also have long names, which I omitted here.

 Features:
 :q Interpolate \\, \q and \'
 :b Other backslash escape sequences like \n, \t
 Operations:
 :x Execute as shell command, return result
 :w Split on whitespaces
 :ww Split on whitespaces, with quote protection
 Variable interpolation
 :s Interpolate scalars ($stuff)
 :a Interpolate arrays (@stuff[])
 :h Interpolate hashes (%stuff{})
 :f Interpolate functions (&stuff())
 Other
 :c Interpolate closures ({code})
 :qq Interpolate with :s, :a, :h, :f, :c, :b
 :regex parse as regex

Tuesday, 6 September 2011

Quoting (continued)

54

There are some short forms which make life easier for you:
 q Q:q
 qq Q:qq
 m Q:regex
You can also omit the first colon : if the quoting symbol is a short form,
and write it as a singe word:
 symbol short for
 qw q:w
 Qw Q:w
 qx q:x
 Qc Q:c
 # and so on.
However there is one form that does not work, and some Perl 5
programmers will miss it: you can't write qw(...) with the round
parenthesis in Perl 6. It is interpreted as a call to sub qw.

Tuesday, 6 September 2011

Parsing

55

This is where parsing comes into play: Every construct of the
form identifier(...) is parsed as sub call. Yes, every.
 if($x<3)
is parsed as a call to sub if. You can disambiguate with
whitespaces:
 if ($x < 3) { say '<3' }
Or just omit the parens altogether:
 if $x < 3 { say '<3' }
This implies that Perl 6 has no keywords. Actually there are
keywords like use or if, but they are only special if used in a
special syntax.

Tuesday, 6 September 2011

The Reduction Meta Operator

56

The reduction meta operator [...] can enclose any associative infix operator, and turn it into
a list operator. This happens as if the operator was just put between the items of the list, so
[op] $i1, $i2, @rest returns the same result as if it was written as $i1 op $i2 op
@rest[0] op @rest[1]

This is a very powerful construct that promotes the plus + operator into a sum function, ~ into
a join (with empty separator) and so on. It is somewhat similar to the List.reduce
function, and if you had some exposure to functional programming, you'll probably know about
foldl and foldr (in Lisp or Haskell). Unlike those [...] respects the associativity of the
enclosed operator, so [/] 1, 2, 3 is interpreted as (1 / 2) / 3 (left associative), [**]
1, 2, 3 is handled correctly as 1 ** (2**3) (right associative).

Like all other operators whitespaces are forbidden, so you while you can write [+], you can't
say [+].

Since comparison operators can be chained, you can also write things like

 if [==] @nums { say "all nums in @nums are the same" }
 elsif [<] @nums { say "@nums is in strict ascending order" }
 elsif [<=] @nums { say "@nums is in ascending order"}
You can even reduce the assignment operator:

 my @a = 1..3;
 [=] @a, 4; # same as @a[0] = @a[1] = @a[2] = 4;
Note that [...] always returns a scalar, so [,] @list is actually the same as [@list].

Tuesday, 6 September 2011

The Cross Meta Operator

57

 for <a b> X 1..3 -> $a, $b {
 print "$a: $b ";
 }
 # output: a: 1 a: 2 a: 3 b: 1 b: 2 b: 3

 .say for <a b c> X 1, 2;
 # output: a1\n a2\n b1\n b2\n c1\n c2\n
 # (with real newlines instead of \n)

The cross operator X returns the Cartesian product of two or more
lists, which means that it returns all possible tuples where the first
item is an item of the first list, the second item is an item of second list
etc.
If an operator follows the X, then this operator is applied to all tuple
items, and the result is returned instead. So 1, 2 X+ 3, 6 will
return the values 1+3, 1+6, 2+3, 2+6 (evaluated as 4, 7, 5,
8 of course).

Tuesday, 6 September 2011

Most Wanted Perl6 Modules

58

• ExtUtils::Command: Port from Perl 5 (or should that be Shell::Command?)
• Email::MIME
• HTTP::Response (and likely HTTP::Request too). LWP::Simple is evolving and

evolving, so maybe there's a need for a full-blown LWP? (Of course! Preferably
with JavaScript handling at some point..)

• SSL
• Digest::* (preferably with a unified API) - MD5 and SHA256 already exist. What

other Digests are wanted?
• All the boring stuff like PDF, Excel etc
• Data formats of all kinds from SOAP, CSV, YouNameIt (ideally Grammar -

validating - generating - parsing - the whole range)
• Net::* - all kinds of networking stuff
• A common widget set (Qt, Gtk)
• Something like either GD, Imager or Image Magick
• GZIP!
• Curses, Readline - all things terminal-ish
• Crypto - GPG etc
• Smart::Match, mebbe with a bit different name?

Tuesday, 6 September 2011

http://search.cpan.org/perldoc?ExtUtils::Command
http://search.cpan.org/perldoc?ExtUtils::Command
http://search.cpan.org/perldoc?Shell::Command
http://search.cpan.org/perldoc?Shell::Command
http://search.cpan.org/~leont/Smart-Match-0.003/lib/Smart/Match.pm
http://search.cpan.org/~leont/Smart-Match-0.003/lib/Smart/Match.pm

