Catalyst::Engine::Stomp
&
MooseX::Workers

By Paul Mooney

Who am 17?

Perl Software Engineer (mostly)

Been working in Perl for 10+ years

Worked in bioinformatics, mobile phones web sites, social
networking etc etc

Been a contractor for 3 years

Used CPAN a lot ;)

| maintain Catalyst::Engine::Stomp on CPAN (I'm not the
original author)
Perhaps | should tell more people about it...

Why C:E:Stomp?

Venda run websites for Tesco, BBC Shop, Fat Face, Laura Ashley
They take money from a variety of different sources
Credit card, PayPal, gift cards, loyalty cards, even barcodes...

This involves talking to many different external companies API
SOAP, HTTPS POST, XML,.

Required a standalone system

Pluggable achitecture, need to talk to many external providers
Scalability

Provider single API to all external providers weird and colourful
interfaces

Catalyst and STOMP can be used together

Catalyst scales

MVC framework, code reuse, no e-invention of the wheel
Lots of perl devs know it
Plus its cool ;)

STOMP is a very simple protocol
Language, platform neutral
However, we can encode perl objects in it

STOMP requires a broker/manager in the middle
Can distribute messages, hence distribute load

What I'm going to tell you

Explain what STOMP is
Examples of how it works
How to make it work in perl

Explain Catalyst::Engine::Stomp
Going from a HTTP request to a STOMP request

Running multiple catalyst servers/processes
Manage them with MooseX::Workers

What is STOMP?

Streaming Text Orientated Messaging Protocol
Platform/language independent
Libraries for many different languages:

C Java
Dynamic C for Rabbit® Gozirra
microprocessors

Objective-C
C++

Perl (Net::Stomp)
C# and .Net

PHP
Delphi

Pike
Delphi and FreePascal

Python
Erlang

Ruby and Rails support.
Flash

Smalltalk
haXe has the hxstomp client

http://stomp.codehaus.org/C
http://code.google.com/p/dstomp/
http://stomp.codehaus.org/Cpp
http://stomp.codehaus.org/DotNet
http://stomp.codehaus.org/Delphi
http://stomp.codehaus.org/Delphi+and+FreePascal
http://stomp.codehaus.org/Erlang
http://stomp.codehaus.org/Flash
http://www.haxe.org/
http://code.google.com/p/hxstomp/
http://www.germane-software.com/software/Java/Gozirra/
http://stomp.codehaus.org/Objective-C
http://stomp.codehaus.org/Perl
http://stomp.codehaus.org/PHP
http://stomp.codehaus.org/Pike
http://stomp.codehaus.org/Python
http://stomp.codehaus.org/Ruby
http://stomp.codehaus.org/Smalltalk

Stomp Example

Stomp Commands

STOMP

A client talks to a broker, like Apache ActiveMQ or
StompServer

A client submits a message into a queue
A broker can have many queues at the same time

ActiveMg b T
Software Foundation
- .u & (] N &

http://www.apache.org/

Home | Queues | Topics | Subscribers | Send

Support
Queue Name | | Create
B Queue Views
m Graph
Queues = XML
Number Of =
Mumber Of Messages Messages H Useful Links
Mame Pending COnSUMers Sent Received Views Operations
Messages @ Documentation
i m FAQ
Browse Sond T m Downloads
sts_pa 0.2 = E end 1o m Forums
unittests_payment_0.2_securepay i} 1] a | el Purge Delete
_
Browse
I Send To
dev_biling 143 0 83 0 —— Purge Delete
_
Browss
- Send To
lesl z 0 2 0 q Purge Delete

Clients

Client

Client

Client

Broker
(ActiveMQ)

Client

|

|

H
H
|

Consumers

CatalystApp

CayalystApp

CatalystApp

CatalystApp

CatalystApp

Send a STOMP message

Client code

my Sstomp = Net::Stomp->new
{ hostname => $hostname, port => '61613' }

)

my Sframe = Sstomp->connect();

my $session = Sframe->headers->{session};
my S$temp queue = "$session:1l";

my $text body = “Reply-To:

Stemp queue\n\nhello”;

Sstomp->subscribe (
{ destination => '/temp-
queue/reply', });

my Sres2 = S$stomp->send({
destination => '/queue/my queue name',

Fire & Forget

We can wait for a reply, if we wish

We could loop and submit 10,000 messages

They sit in the queue until something consumes them
A simplistic job control system

Processes can run on different hosts

Receive STOMP messages

#Server Code

subscribe to messages from the queue 'foo'
use Net::Stomp;

my S$Sstomp = Net::Stomp->new(
{ hostname => 'localhost', port =>
'61613"' });
Sstomp->connect (
{ login => 'hello', passcode => 'there' });
Sstomp->subscribe({ destination => '/queue/foo',

o)

while (1) {
my $frame = $stomp->receive frame;
warn S$frame->body; # do something here
Sstomp->ack({ frame => Sframe });

STOMP Contents

The STOMP message has headers and a body
The body of our text is serialised into YAML

destination:/queue/fruit

Message-id:
ID:dev-44356-1276157476157-2:163:-1:1:1
Timestamp: 2010-06-14 17:32:46:828 BST

Headers

Body ——— !!perl/hash:Some: :0bject
opal: starburst
reply to: ID:dev-44356-1276157476157-2:163:1

type: sweetie

STOMP Raw Contents

As a side note...

Bad Plain Text, Bad!

Sending credit card numbers in raw text not a wise idea
ActiveMQ lets you see the contents of messages
We also have to assume it writes them to disk for redundancy

This would cause huge PCI DSS issues
Encrypt

We encrypt the YAML into some other text form and send that
On the other wide we decrypt back into YAML then into a perl
object again

We use Encrypted Mime (Crypt::SMIME)

Now you know what STOMP
IS lets move onto Catalyst

Catalyst::Engine::Stomp

Use the Catalyst framework to build consumer/listeners
Replace the engine with C::E::Stomp

Think of the engine as the bit that actually listens on a
socket and routes requests to the right thing

Catalyst provides a mechanism to do this for other types of
engine like CGl, FastCGl and HTTP

Simply implements certain methods, like run()

Catalyst Controllers & Actions

Very simplistic example to explain terminology:

/fruit/sweetie
RN y
N
Controller Action

Package TestApp::Fruit;

sub sweetie : Local {
my ($self, $c) = @_;
}
No URLs with C::E::Stomp. We use the providers name to
generate a controller namespace and the possible
message/object types to determine the actions.

Controllers & queues

The controllers namespace is by default the name of the queue

package TestApp::Controller: :Fyuvdde/fruit
package TestApp::Controller::iyfigafs/trees
package TestApp::Controller: :Aaeilfe/beer

When your catalyst app is starts, C:E:Stomp hunts down
your controllers and automatically subscribes to queues. The
queues are automatically created by ApacheMQ

The Root Conroller

package TestApp::Controller::Root;
use Moose;

BEGIN { extends 'Catalyst::Controller::MessageDriven' };
sub default : Private {

my ($self, $c) =@_;
$c->response->body('Unhandled Message!');

A Controller

package TestApp::Controller::Fruit; # /queue/fruit
use Moose;

BEGIN { extends 'TestApp::Controller::Root' };

sub sweetie : Local {
my ($self, $c) = @_;

my $obj = $c->stash->{request};

Reply with a minimal response message
my $response = { flavour => 'strawberry', obj type => ref(%$obj) };
$c->stash->{response} = $response;

sub default : Local {
my ($self, $c) =@ ;

my $action = $c->stash->{request}->{ 'type' };
1f (defined $action) {
$c->forward($action, [$c->stash->{request}]);

}
else {

$c->error('no message type specified');
}

In a server script:

BEGIN {
$ENV{CATALYST ENGINE} = 'Stomp’;
require Catalyst::Engine::Stomp;
}

MyApp->config(
Engine: :Stomp' = {
tries per server => 3,
‘servers' => |

{
‘hostname' => 'localhost’,
‘port' => '61613"
I
{
‘hostname' => 'stomp.yourmachine.com',
‘port' => '61613"
I
utf8 => 1,
subscribe header => {
transformation => 'jms-to-json’,
}

¥
);
MyApp->run() ;

Catalyst::Engine::Stomp::run()

my @queues = grep { length $ }
map { $app->controller($)->action namespace }
$app->controllers;

$self->connection(Net::Stomp->new(\%template));
$self->connection->connect();

$self->conn desc($template{hostname}."':".
$template{port});

subscribe, with client ack.
foreach my $queue (@queues) {
my $queue name = "/queue/$queue";
$self->connection->subscribe({
%$subscribe headers,
destination => $queue name,
ack => 'client',

1)

enter loop...

while (1) {
my $frame = $self->connection->receive frame(); # block
$self->handle stomp frame($app, $frame);

PaymentApp x N

Now we have an app that can listen to many queues and
process requests

But it is a single process, we need many to handle the requests
coming from the clients

We need a way to run and manage multiple apps that will run
on a single machine

MooseX::Workers can do this

MooseX::Workers

Hides POE, which can be described as

Framework for cooperatively multitasking programs

Handles events, reacts to external events, the passage of time
Applications can fork/thread

Very powerful and complex

GO AXL Y REAIMAE thBBGHBIBRYY f PR ISNRERIRS A% Ok

mange many sub processes, like catalyst apps

Fork children

Easy if a child finishes, easy to start another

Can set callbacks to handle events, like a child finishing

Could enqueue 100 processes but set a limit of 5 to run at a time,
Could be a job control system (it has it own internal queue)

package Manager;
use Moose;
with gw(MooseX::Workers);

sub run {
$ _[0]->spawn(sub { sleep 3; print "Hello World\n" });
warn "Running now ... ";
POE::Kernel->run();

Implement our Interface

sub worker_manager_start { warn 'started worker manager" }

sub worker_manager_stop { warn 'stopped worker manager' }

sub max_workers_reached { warn 'maximum worker count reached' }

sub worker_stdout { shift; warn join'', @ _; }
sub worker_stderr { shift; warnjoin'', @ _; }
sub worker_error { shift; warnjoin'', @ ; }
sub worker_done { shift; warn join"'', @_; }
sub worker_started { shift; warn join'', @_; }

sub create worker {

my ($self, %args) = @ ;

my $name = 'a name';

my $call = 'spawn’';

$call = 'enqueue' 1if $args{enqueue};

my $pid = $self->$call(
MooseX: :Workers: :Job->new(
name => $name,
command => sub {
TestApp->run();
}

));

- Wraps your code and forks

}

sub start workers {
my $self = shift;
return if $self->terminate;
$self->max workers($self->num child workers);
for my $1 (1..%$self->num child workers) {
$self-> create worker;
}

Starting/Stopping the apps

We can use the interface to respond to signals

sub sig child { shift; warn join ' ', @ ; }
sub sig TERM { shift; warn 'Handled TERM' }
Sub sig HUP { shift; warn 'Handled HUP' }

HUP signal to manager to make it re-read its config file and restart
all the workers gracefully.
TERM signal and it will stop the workers and then itself

The signal work was started after Jay Hannah got me to start it
go on github and implement it.

To Wrap Up...

Catalyst::Engine::Stomp

You can write a system that scales very easily
Multiple processes
Multiple hosts

Uses a framework you probably already know

MooseX::Workers

Wraps POE with Moose
Make POE easy!

Use it to manage many Catalyst apps

Thanks for listening :)

Catalyst::Engine::Stomp - Copyright Venda

Chris Andrews
Tomas Doran (t0m)
Jason Tang

Paul Mooney
MooseX::Workers

Chris Prather
Tom Lanon
Jay Hannah
Justin Hunter

END

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

