
My experiences with Catalyst

My Perspective

Trainee/self-taught web developer of 12 years

Used to 'hand roll' a lot of stuff or use Mason + a few other CPAN
modules … pretty much frame-work free.

Why Catalyst?

I did not really know what a framework was, but I was looking
for one!...
.. I was looking for a flexible CMS type thing we could all start
using at work to meet our customers requirements.. I read a
little about Catalyst, and was tempted to give it a go...

First Impressions

I was not blown away straight off … having read only a bit about it I could not really
see the point of it all... I can do all of this in Mason??

At the MKLUG, I asked a few questions and got a very, VERY
positive and encouraging response... so I continued, with faith I
was not going down the wrong path...

Facts like, BBC iPlayer is using it, calmed any worries I had about
wasting time on this research .. obviously, production use of this
thing called Catalyst is not a problem!

The best place to start..

For a good grounding in the different areas of Catalyst, I would suggest
 running through the Catalyst::Manual::Tutorial

DO NOT then go ahead and start your first production application,
you will make important decisions that with a bit more experience
you will probably make differently … believe me, I KNOW!

.. next ...

DO read the The Definitive Guide to Catalyst!

This book is full of handy Perl tips (not just Catalyst). Most
importantly though, it demonstrates good Catalyst practise...

.. now, with the knowledge from the book, do as
much production stuff as you want ;)

What has Catalyst given me?

Structure – I do not have to think so hard about my files and how to lay them
out. No more making up and sticking to rules. It's just, the way you do it.

Organisation – By its nature, your Catalyst apps will be tidy and organised, still
requiring a bit of thought but the MVC layout goes a long way to sorting your
code out.

Less Stress – Since I have been using Catalyst and the associated modules, I
have a lot more confidence in the rigidity of my work.

Modern techniques – AJAX, Web services and more are easy with Catalyst.

Testing – Proper testing is a great way to keep track of your application and
how updates have effected it ... slightly painful at first, but worth the extra typing.

Education – Using Catalyst has opened my eyes to world of OO Perl. Now
there is so more much to learn.

What are some cool advantages?

Catalyst on its own is very light weight (if you just want the framework) but
typically you will want to integrate with other CPAN modules... here are some I
really liked using.

Catalyst::Plugin::Authentication - Session
Everyone wants an easy to use, flexible and quick to configure authentication
system and session... here it is!

HTML::FormFu
Configuration of forms for output and validation...
• Groupings
• TT
• Model Integration
• Date Input types
• Validation (Call backs, this or this, etc. etc.)

Catalyst::Plugin::RequireSSL
Might be a bit old now, but I found it to be exactly what I wanted... now I don't
even think about HTTP/S

.. and some more cool advantages?

DBIx::Class
Now this is whole different beast, and nothing to do with Catalyst, but I was
introduced to it via Catalyst and thought it should be mentioned.

This is scary at first and frustrating... I just want to do a freekin query! … but once
over the first few hurdles I am using it all the time and LOVE all the advantages,
although I know I have a lot more to understand yet.

One of first things I thought was cool … I had done a pretty complex page for a
client, who then said “love it, perfect ... but can we have it across multiple pages?”

I thought, nightmare!... all that lovely code messed up but with DBIx:Class and
Data::Page, my problem was solved in about 20 characters.

Another cool thing is after spending time putting my schema into .. err.. Schema...
I found I could do some cool things..
$customer->update({ name => 'bill' })
$customer->add_groups(@groups)
$customer->search_related('groups', { name => { like => 'a' } })->count

data::Page

.. if you're interested...
MODEL ## DBIX::Class::Schema

__PACKAGE__->load_components("InflateColumn::DateTime", "Core");
__PACKAGE__->table("customers.ta_customers");
__PACKAGE__->add_columns(

 "customer_id",
{

data_type => "integer",
default_value => undef,
is_nullable => 0,
is_numeric => 1,
size => undef,
sequence=> 'customers.sq_customer_id',
is_auto_increment => 1,
auto_nextval => 1,

},
"date_registered",
{
 data_type => "timestamp",
},
.. etc, etc...
)

CONTROLLER

.. setup some vars (perhaps from the QS)
my $letter_list = [A .. G];
my $page = ($c->params->{page} ? $c->params->{page} : 1);

... running a not standard sql search (returning ResultSet)....
$c->stash->{foundcustomers} = $c->model('DB::Customers')->search(

{
custtype => ['theatre', 'venue'],

 website_suppress => 0,
'upper(substring(addr_town, 1, 1))' => { in => $letter_list }

},
{

order_by => ['company_name'],
rows => 40,
page => $page

}

);

VIEW ## TemplateToolkit

[% customers_pager = foundcustomers->pager %]

.. want to display how many pages got returned??..
[% customers_pager.total_entries -%] Results:

.. use TT to display all available pages...
[% FOREACH pageno = [customers_pager.first_page .. customers_pager.last_page] -%]

 pageno) %]">
Page: [% pageno %]

[% END -%]

.. display the customers details (the date in format we ask for)...
[% WHILE (cust = foundcustomers.next) %]

[% cust.company_name -%]
Registered: [% cust.date_registered.dmy('/') -%]

[% END -%]

There's SO much more...

I have only used Catalyst for one large (ish) project and therefore have only
dipped my toe in the water, but I know there is loads more to learn and to do
with it.

If you are in a similar position to me I can not shout loud enough about how
great Catalyst is and how it will improve your life

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

