
Schedule::Pluggable
My first CPAN module

Built on MooseX::Workers

Provides a simple interface to run processes

Easily customisable

Provides just three methods

run_in_series
run_in_parallel
run_schedule

run_in_series and run_in_parallel are utility
methods which call run_schedule to run the
jobs

Interface
each method expects either :-

• a list of jobs to run

• a reference to a list of jobs to run

• a reference to a hash keyed on job name

each job can be :-

1. a scalar value containing the path to an executable to run or a code reference to
some code to be run

2. an anonymous hash containing at least on value - ‘command’ containing the
details as per 1.

Specifying Jobs by a hash

• name => ‘A Job name’, # defaults to Job$n where $n is Job number
• command => ‘<path to an executable> [<param>] [<param> ..]’ or a code ref
• params => (list of parameters),
• groups => (list of groups),
• prerequisites => (list of jobs or groups which must succeed first),
• dependencies => (list of jobs or groups which await this job succeeding),

Example

use Schedule::Pluggable;
my $s = Schedule::Pluggable->new();
$s->run_schedule([{ name => ‘First’, command => ‘echo Hello’ },

 { name => ‘Second’, command => ‘echo World’ });

Examples
use Schedule::Pluggable;
my $s = Schedule::Pluggable->new();

$s->run_in_series([‘echo Hello’, ‘echo World’]);

$s->run_in_series([{ name => ‘First’, command => ‘echo Hello’ },
 { name => ‘Second’, command => ‘echo World’ }]);

$s->run_in_series({ First => ‘echo Hello’ , Job2 => ‘echo World’ });

More Examples
$s->run_schedule([{ name => ‘First’,

 command => ‘echo’,
 params => [‘Hello’],

 dependency => ‘Second’,
 },

 { name => ‘Second’,
 command => ‘echo World’ },
]);

$s->run_schedule([{ name => ‘First’,
 command => ‘echo’,
 params => [‘Hello’],

 },
 { name => ‘Second’,
 command => ‘echo World’ },
 prerequisite => ‘First’,
]);

Using Groups
$s->run_schedule(
[{ name => ‘First’, command => ‘echo Hello’ , },
 { name => ‘Second’, command => ‘echo World’, prerequisite => ‘First’, }
 { name => ‘Third’, command => ‘echo Something else’, prerequisite => ‘First’, },
]);

$s->run_schedule(
[{ name => ‘First’, command => ‘echo Hello’ , dependency => ‘Rest’, },
 { name => ‘Second’, command => ‘echo World’, groups => [‘Rest’], }
 { name => ‘Third’, command => ‘echo Something else’, groups => [‘Rest’], },
]);

But why Schedule::Pluggable ?

The default behaviour can easily be overridden by using Plugins.
There are two Plugin types available :-
JobsPlugin - controls where the jobs configuration comes from
EventsPlugin - controls what happens when an event occurs

The JobsPlugin is required to provide a single method - ‘get_job_config’ which is
expected to return a reference to either a has of an array containing the jobs to run.
By default JobsPlugin is set to ‘JobsFromData’ which means that the plugin
Schedule::Pluggable::Plugins::JobsFromData is loaded.

There are two alternative JobsPlugin provided :-
JobsFromXML and JobsFromXMLTemplate both of which obtain the jobs configuration
from a file containing XML the latter also passes the file through Template Toolkit
before processing allowing you to make the definition dynamic.

Jobs from XML
 use Schedule::Pluggable (JobsConfig => 'JobsFromXML');
 my $p = Schedule::Pluggable->new;
 my $status = $p->run_schedule({XMLFile => 'path to xml file'});

 XMLFile in following format :-
 <?xml version="1.0"?>
 <Jobs>
 <Job name='Job1' command='<command1>'>
 <params>3</params>
 <dependencies>second</dependencies>
 </Job>
 <Job name='Job2' command='<command2> '>
 <params>3</params>
 <group>second</group>
 </Job>
 ...
 <Jobs>

EventsPlugin
Enables handling of any event which occurs.
By default the event handler simply outputs what
has occured to stdout, a supplied file handle or
Log4perl handle.
By supplying your own plugin you can make it do
whatever you want.
e.g.
Update a database, update memcached for
dynamic display on an ajax web page or send
emails on error

EventsPlugin continued
package Schedule::Pluggable::Plugin::DefaultEventHandler;
use Moose::Role;

event_handler is passed a Schedule::Pluggable object ref and a has of parameters including :-

sub event_handler {
 my $self = shift;
 my %params = @_;
! return if exists $params{JobName} and $params{JobName} =~ m/^MonitorJobs$/i;
! return if $self->EventsToReport =~ m/^none$/i;
! my $event = $params{Event};
! return if $self->EventsToReport !~ m!^all$!i and
 $self->EventsToReport !~ m!\b$event\b!;
 my %whattoreport = (
 JobQueued => [qw/ Event JobName Command /],
 JobStarted => [qw/ Event JobName Command /],
 JobDone => [qw/ Event JobName Command /],
 JobStderr => [qw/ Event JobName Stderr /],
 JobStdout => [qw/ Event JobName Stdout /],
 JobFailed => [qw/ Event JobName Command ReturnValue Stderr /],
 JobSucceeded => [qw/ Event JobName Command /],
 MaxJobsReached => [qw/ Event /],
 ManagerStart => [qw/ Event /],
 ManagerStart => [qw/ Event /],
);

1;

