
POE

Colin Bradford

Milton Keynes Perl Mongers, October 2010

Agenda

● Example problem
● POE
● Event Programming
● Solving the problem with POE

● Architecture
● Connection to CouchDB
● Web server

Example Problem

● Performance Dashboard

● Web based display of current application performance

● Expensive to calculate
● Needs to be as close to real time as practicable

● Needs to be as lightweight as possible

First Solution

● Calculate the results, and push them to a
cache

● Clients poll for updates
● Problems:

● Freshness of data limited to poll time
● Reducing poll time increases network and

server load

POE

● POE is a Perl framework for reactive systems,
cooperative multitasking, and network
applications

● POE manages Sessions, which do work
● Sessions send and receive events, and should

not block
● Many POE Components on CPAN for useful

tasks

Event Programming

● Write code in pieces eg
● Start a connection to server
● When connected, send message
● When receive a message, process

Solving the problem with POE

● Store the data in a CouchDB instance
● Listen for changes in a POE Session
● A web server process accepts web requests,

with the id of the data that the client has
● If the request does not have the current data,

send the latest data
● If the request has the current data, wait for the

data to change, and send the new data

Connection to CouchDB

Create a couch listener

POE::Component::Client::TCP->new(

 RemoteAddress => 'localhost',

 RemotePort => 5984,

 Connected => \&couch_handle_connected,

 ServerInput => \&couch_handle_server_input,

 Alias => 'changeswatcher',

 InlineStates => {

 get_data => \&couch_get_data,

 }

);

Couch Connected event

sub couch_handle_connected {

 my ($heap) = $_[HEAP];

 print "Connected\n";

 $heap->{server}->put("GET /reporting/_changes?

since=0&include_docs=true&feed=continuous&heartbeat=28000

HTTP/1.0\n\n");

 say "Connected to changes server";

}

Couch Data event

sub couch_handle_server_input {

 my ($kernel, $heap, $input) = @_[KERNEL, HEAP, ARG0];

 # If it's a changes line, process it.

 if ($input =~ /^{/) {

 my $data = JSON::XS::decode_json($input);

 # If it's the right document, store the document.

 if ($data->{doc}->{_id} eq 'overview') {

 $heap->{lastdata} = $data->{doc};

 # and tell all the watchers that the document changed

 send_message($kernel, "Document changed");

 }

 }

}

{"seq":7,"id":"overview","changes":[{"rev":"7-

ca902d4a99283171d8a451241d032a56"}],"doc":{"_id":"overview","_rev":"7-

ca902d4a99283171d8a451241d032a56","warehouse":15000,"cs":50,"receipts":25000}}]}

Data accessor

Allow other sessions to get our data, without exposing it as a global

sub couch_get_data {

 my ($kernel, $heap) = @_[KERNEL, HEAP];

 my $data = $heap->{lastdata} || {};

 return $data;

};

Web Server

Create Web service sessions

POE::Component::Server::TCP->new(

 Alias => 'web_server',

 Port => 8080,

 ClientFilter => 'POE::Filter::HTTPD',

 ClientInput => \&web_client_input,

 InlineStates => {

 respond => \&web_respond,

 },

);

Connection handler

sub web_client_input {

 my ($kernel, $heap, $request, $session) = @_[KERNEL, HEAP, ARG0,

SESSION];

 # If we've got a response already, it's an error, so send it

 if ($request->isa('HTTP::Response')) {

 $heap->{client}->put($request);

 $kernel->yield('shutdown');

 return;

 }

 my $uri = $request->uri();

 my ($filename) = ($uri =~ m/^\/file\/([a-z0-9\.]+)$/);

 $filename = $uri if $uri eq '/favicon.ico';

 if (defined $filename) {

 web_send_file($heap->{client}, $filename);

 $kernel->yield('shutdown');

 return;

 }

Connection handler (cont)

It’s a request for data, so see if client has the latest

my ($update) = ($uri =~ m/^\/overview\/(\d+-[a-z0-9]+)$/);

Get the current data

my $data = $kernel->call('changeswatcher', 'get_data');

If the current revision doesn't match, send immediately

if (!defined $update or $update ne $data->{_rev}) {

 $kernel->yield('respond');

}

Start watching the changeswatcher

start_watcher($session->ID, 'respond');

And set a timeout, in case we don't get a change

$kernel->delay('respond' => 28);

}

Web responder

sub web_respond {

 my ($kernel, $session, $heap) = @_[KERNEL, SESSION, HEAP];

 # Clear the reasons for the call

 stop_watcher($session->ID); # Stop watching for a response

 $kernel->delay('respond'); # Clear any timer that might be outstanding

 # Create a response with the appropriate data

 my $response = HTTP::Response->new(200);

 $response->push_header('Content-type' => 'application/json');

 my $text = JSON::XS::encode_json($kernel->call('changeswatcher', 'get_data')

);

 $response->content($text);

 # Send the response, and close the session. Sometimes we get a race, and the

client has already been replied to.

 if (defined $heap->{client}) {

 $heap->{client}->put($response);

 }

 $kernel->yield('shutdown');

}

Notifying changes

my %watcher;

sub start_watcher {

 my ($sessionID, $callback_event) = @_;

 $watcher{$sessionID} = $callback_event;

}

sub stop_watcher {

 my ($sessionID) = @_;

 delete $watcher{$sessionID};

}

sub send_message {

 my ($kernel, $message) = @_;

 foreach my $sessionID (keys %watcher) {

 $kernel->post($sessionID, $watcher{$sessionID}, $message);

 }

}

Thank you!

