POE

Colin Bradford

Milton Keynes Perl Mongers, October 2010

Agenda

Example problem

POE

Event Programming

Solving the problem with POE

* Architecture
 Connection to CouchDB
* \Web server

Example Problem

* Performance Dashboard

* Web based display of current application performance
* Expensive to calculate
* Needs to be as close to real time as practicable

* Needs to be as lightweight as possible

First Solution

* Calculate the results, and push them to a
cache

* Clients poll for updates

* Problems:

* Freshness of data limited to poll time

* Reducing poll time increases network and
server load

POE

POE is a Perl framework for reactive systems,
cooperative multitasking, and network
applications

POE manages Sessions, which do work

Sessions send and receive events, and should
not block

Many POE Components on CPAN for useful
tasks

Event Programming

* Write code In pieces eg

* Start a connection to server
* When connected, send message
* When receive a message, process

Solving the problem with POE

e Store the data in a CouchDB instance
* Listen for changes in a POE Session

* A web server process accepts web requests,
with the id of the data that the client has

* |f the request does not have the current data,
send the latest data

* |f the request has the current data, wait for the
data to change, and send the new data

Connection to CouchDB

Create a couch listener

POE: :Component: :Client: :TCP->new (

RemoteAddress => 'localhost',

RemotePort => 5984,

Connected => \&couch handle connected,
ServerInput => \&couch handle server input,
Alias => 'changeswatcher',
InlineStates => {

get data => \&couch get data,

Couch Connected event

sub couch handle connected ({

my (Sheap) = S [HEAP];
print "Connected\n";
Sheap->{server}->put ("GET /reporting/ changes?

since=0&include docs=true&feed=continuousé&heartbeat=28000

HTTP/1.0\n\n") ;
say "Connected to changes server";

Couch Data event

sub couch handle server input (
my ($kernel, S$heap, S$input) = @ [KERNEL, HEAP, ARGO];
If it's a changes line, process it.
if ($input =~ /~{/) |
my S$data = JSON::XS::decode json ($Sinput);
If it's the right document, store the document.
if ($data->{doc}->{ id} eqg 'overview') {
Sheap->{lastdata} = $data->{doc};
and tell all the watchers that the document changed

send_message($kernel, "Document changed") ;

{"seqg":7,"id":"overview", "changes":[{"rev":"7-
ca902d4a99283171d8a451241d032a56"}],"doc": {" id":"overview"," rev":"7-
ca902d4a99283171d8a451241d032a56", "warehouse":15000,"cs":50, "receipts":25000}} 1}

Data accessor

Allow other sessions to get our data, without exposing it as a global

sub couch get data {
my ($kernel, S$heap) = @ [KERNEL, HEAP];

my $data = Sheap->{lastdata} || {}:

return Sdata;

Web Server

Create Web service sessions

POE: :Component: :Server: :TCP->new (

Alias => 'web server',
Port => 8080,
ClientFilter => 'POE::Filter::HTTPD'
ClientInput => \&web client input,
InlineStates => {

respond => \&web respond,
b

Connection handler

sub web client input ({
my (Skernel,
SESSION] ;

Sheap, Srequest, $session) @

If we've got a response already,

it's an error,

[KERNEL, HEAP, ARGO,

so send 1t

if (Srequest->isa ('HTTP::Response')) {
Sheap->{client}->put (Srequest) ;
Skernel->yield('shutdown') ;
return;

}

my Suri = Srequest->uri();

my (Sfilename) = (Suri =~ m/"\/file\/([a-z0-9\.]+)S/);

Sfilename = Suri if Suri eq '/favicon.ico';

if (defined Sfilename) {

web send file(S$heap->{client},
Skernel->yield('shutdown') ;

return;

Sfilename) ;

Connection handler (cont)

It’s a request for data, so see if client has the latest

my (Supdate) = (Suri =~ m/"\/overview\/ (\d+-[a-z0-9]+)$/);

Get the current data

my Sdata = Skernel->call ('changeswatcher', 'get data');

If the current revision doesn't match, send immediately

if (!defined Supdate or Supdate ne S$data->{ rev}) {
Skernel->yield ('respond') ;

Start watching the changeswatcher
start watcher ($session->ID, 'respond');

And set a timeout, in case we don't get a change

Skernel->delay ('respond' => 28);

Web responder

sub web respond {

my (Skernel, S$session, Sheap) = @ [KERNEL, SESSION, HEAP];

Clear the reasons for the call

stop watcher ($session->ID); # Stop watching for a response
Skernel->delay('respond'); # Clear any timer that might be outstanding
Create a response with the appropriate data

my Sresponse = HTTP::Response->new (200) ;
Sresponse->push header ('Content-type' => 'application/json');

my Stext = JSON::XS::encode json(Skernel->call ('changeswatcher', 'get data')

Sresponse->content ($text) ;
Send the response, and close the session. Sometimes we get a race, and the
client has already been replied to.
if (defined S$heap->{client}) {
Sheap->{client}->put (Sresponse) ;
}
Skernel->yield('shutdown') ;

Notifying changes

my Swatcher;
sub start watcher {
my ($sessionID, Scallback event) = @ ;

swatcher{$sessionID} = Scallback event;

sub stop watcher {
my ($sessionID) = @ ;

delete Swatcher{SsessionID};

sub send message {
my (Skernel, Smessage) = @ ;
foreach my $sessionID (keys %watcher) {

Skernel->post ($sessionlID, S$watcher{$sessionID}, S$Smessage);

Thank you!

