Load Balancing with Perlbal

Katherine Spice
MiltonKeynes.pm

15/10/09

What is Load Balancing?

—
)

FEEEE E o

Why and when might you use
Load Balancing?

« Capacity: you aren't able to meet the demand
on your service with a single server

« Resilience: you want to be able to cope with
the failure of a server

Considerations in choosing a
Load Balancer

Features Cost
> Type of traffic > Commercial Hardware:
Layer 3 /4 (IP/TCP) vs Layer 7 (application F5 BiglP, Citrix NetScaler, Cisco ACE

specific, e.g. HTTP
p g. HTTP) Easy, fast, ££££ to £££,£££!

> Balancing algorithm

Y

Commercial Software:

random choice o
Citrix VPX, Zeus ZXTM

round robin
up to ££,£££
manual weighting
- automated weighting based on
environment such as: > 0SS

~ reported load LVS, Balance, Perlbal

-~ response time
Free

> available connections

So, If you're after a free, high performance,
software HTTP load balancer.....

Perlbal

Background

First release was in 2005

Danga Interactive / Brad Fitzpatrick
http://www.danga.com/perlbal/

“needed internal redirects, tried to hack it onto 4 others load balancers, but
too painful. Easier to write our own, then once we had it we were able to
start doing tons more tricks and had a lot more visibility into what was going
on. Also our performance went up a ton, as Perlbal's load balancing is just
better than anything else we tried. (and we went through a ton of load
balancers)”

http://www.danga.com/perlbal/

Perlbal

Perlbal is a Perl-based reverse proxy load
balancer and web server.

It processes hundreds of millions of requests a
day just for LiveJournal, Vox and TypePad and
dozens of other "Web 2.0" applications.

Features

Maintains pool of connected backend connections to reduce turnover

Intelligent load balancing based on what backend connections are free for
a new request.

Almost everything can be configured or reconfigured on the fly without
needing to restart the software

Has a high priority queue for sending requests through to backends
quickly (based on cookies or URI or host).

Configurable header management before sending request to backend
Internal redirection to file or URL(s) transparent to the client.

Can verify that a backend connection is talking to a webserver and not just
the kernel's listen queue before sending client requests at it.

|s extendable via plugins

Obtaining and Installing

Current version: 1.73

CPAN

http://search.cpan.org/dist/Perlbal/
perl —MCPAN —-e shell
cpan—> 1nstall Perlbal

Ubuntu packages
https://edge.launchpad.net/~awmcclain/+archiv

http://search.cpan.org/dist/Perlbal/
https://edge.launchpad.net/~awmcclain/+archive

Configuring

Default config file: /etc/perlbal/perlbal.conf

CREATE
POOL
POOL
POOL
POOL

CREATE
SET
SET
SET
SET
SET
SET

ENABLE

POOL my_apaches
my_apaches ADD
my_apaches ADD
my_apaches ADD
my_apaches ADD

10.
10.
10.
10.

SERVICE balancer

listen

role

pool

persist_client

persist_backend

verify_backend
balance

.10:
.11
12
.13

O O oo
O O oo

0.0.0.0:

8080

:3080

8081

80

= reverse_proxy
my_apaches

on
on
on

Configuring alt.

CREATE POOL dynamic
SET nodefile = conf/nodelist.dat

CREATE SERVICE balancer?

SET listen = 0.0.0.0:81
SET role = reverse_proxy
SET pool = dynamic

ENABLE balancer?

Running

$./perlbal —--help

Usage: perlbal [OPTS]
——help This usage 1info
——version Print perlbal release version
——config=[file] Specify Perlbal config file
(default: /etc/perlbal/perlbal.conf)
——daemon Daemonize

S ./perlbal -d

Managing

Add this to config file:

always good to keep an internal management port open:
CREATE SERVICE mgmt

SET role = management
SET listen = 127.0.0.1:60000
ENABLE mgmt

$ telnet 127.0.0.1:60000
pool my_apaches ADD 10.0.0.14

SHOW POOL
CREATE POOL new_apaches

pool new_apaches add 10.0.0.15
set balancer pool = new_apaches

Monitoring

Perlbal provides the following via the management interface, all in machine
readable format.

* CPU usage (user, system)

* Total requests served across all services

* Requests service by individual backends

* Perlbal uptime

* All connected sockets

* Qutstanding connections to backends

* Backends that have recently failed verification

* Pending backend connections by service

* Total of all socket states by socket type

* Size (in seconds and number of connections) of all queues
* State of reproxy engine (queued requests, outstanding requests,
backends)

* Loaded plugins per service

Extending

Perlbal supports the concept of having per-service and global plugins that
can override many parts of request handling and behavior, via hooks.

Global hooks

Perlbal::register_global_hook ('foo', sub { return 0; 1});

Service handler hooks

Sservice->register_hook ('bar', sub {
do something
return 1;

}) g

Service general hooks

Hooks

Examples:

HANDLER start web request Perlbal::ClientHTTP
When a 'web' service has gotten headers and is about to serve it... return
a true value to cancel the default handling of web requests.

HANDLER start send file Perlbal::ClientHTTPBase
Called when we've opened a file and are about to start sending it to the
user using sendfile. Return a true value to cancel the default sending.

HANDLER start serve request Perlbal::ClientHTTPBase, $uri_ref
Called when we're about to serve a local file, before we've done any

work. You can change the file served by modifying $uri_ref, and cancel the
process by returning a true value.

Plugin Config

In perlbal.conf

LOAD MyPlugin

CREATE SERVICE balancer
SET listen =

0.0.0.0:80

SET role = reverse_proxy
SET pool = my_apaches
SET persist_client = on

SET persist_backend = on

SET verify_backend = on

SET plugins = MyPlugin

ENARLE balancer

Plugin Structure

package Perlbal::Plugin::MyPlugin;

use strict;
use warnings;

Called when we are loaded, do set up and global commands
here

sub load { return 1; }

Clear our global commands
sub unload { return 1; }

called when we're being added to a service
sub register { return 1; }

called when we're no longer active on a service
sub unregister { return 1; }

1;

Extracted from Perlbal::Plugin::Log at
http://www.eamondaly.com/perl/Perlbal/Log.pm

sub load {
my S$class = shift;

Perlbal: :register_global_hook ('manage_command.logname', sub {

)i

my Smc = shift->parse(qr/~logname\s+ (?2: (\w+)\s+) ?\s*=\s* (.+)\s*$/,

"usage: LOGNAME [<service>] = <file>");
my ($svc_name, $logname) = Smc->args;
unless ($svc_name | |= Smc->{ctx}{last_created}) {

return Smc->err ("omitted service name not implied from context");

}

my $ss = Perlbal->service ($svc_name);
return $mc->err ("Service '$svc_name' is not a web_server service")
unless $ss && S$ss—>{role} eq "web_server";

my S$fh;

Slogname =~ s/"~\"//;
$logname =~ s/\"$//;

if (Slogname =~ s/"\|\s*//) {
$fh = new IO::Pipe;
eval { $fh->writer($logname) };

Note that the ability to capture any errors here will
depend largely on your OS and shell

return Smc->err ("Failed to open '$logname': $@")
if $@;
}
else {
$fh = new IO::File $logname, O_WRONLY|O_APPEND |O_CREAT;
return Smc->err ("Failed to open '$logname': $!")

unless $fh;
}

S$fh->autoflush (1) ;

$logobjs{$svc_name}->{'service'} = $ss;
Slogobjs{$svc_name}->{"'fh'} = S$fh;

return S$mc->ok;

return 1;

http://www.eamondaly.com/perl/Perlbal/Log.pm

sub register
my (Sclass, $svc) = @_;

$Ssvc->register hook('Log', 'start_web_ request', sub {
my Perlbal::ClientHTTP $client = shift;
Sclient—>{'scratch'}->{'Log:start_web_request'} =

[gettimeofday ()];

return 0;

}) g

$sve->register_hook('Log', 'end _web_request', sub {
&log_request (shift);

return 0;

}) g

return 1;

sub log_request {
my Perlbal::ClientHTTP S$Sclient = shift;
my Perlbal::HTTPHeaders $req _headers = $client->{req_headers};
my Perlbal::HTTPHeaders S$res_headers = $client->{res_headers};

my Sstart_time = delete S$Sclient->{'scratch'}->{'Log:start_web_request'};
my $req time = sprintf('%.3f', &tv_interval (Sstart_time)) if S$start_time;

if ($client && S$Sreq headers && Sres_headers) {
my $svc = Sclient->{'service'};

if (my $fh = $logobjs{S$Ssvc—->{'name'}}->{"fh'}) {

my S$auth;

if (S$reqg _headers->{'headers'}{'authorization'} =~ /"Basic (.+)/) {
(Sauth, undef) = split(/:/, decode_base64($1), 2)

}

my S$referer = $req headers->{'headers'}{'referer'};

Sreferer =~ s/"/\\"/g;

my Sua = Sreq_headers->{'headers'}{'user-agent'};

Sua =~ s/"/\\"/g;

printf $fh gg{%s - %s [%s] "%s" %d
Sclient->peer_ip_string,
Sauth || '-',
strftime ('%$d/%b/%Y:%H:%M:%S %z', localtime),
Sreq _headers—>{'requestLine'},
Sres_headers->response_code,
Sres_headers—>content_length,

o\

d "$s" "&$s" %$s %s $s %$s\n},

Sreferer || '-',

sua || '-',
Sreq_headers—->{'headers'}{'host'} || '-',
Sreqg_time || '-',

Ssvc—>name,
Ssvc—>role;

If there's no existing hook for end_web_request in
http_response_sent, add one.

1f (! exists &Perlbal::Service::end_web_request) {
Add dummy hook
*Perlbal::Service: :end_web_request = sub { };

Copy the original http_response_sent
*_http_response_sent_orig =
*Perlbal::ClientHTTPRBase: :http_response_sent;

Override with our own, which includes the hook
*Perlbal::ClientHTTPRBase: :http_response_sent =

*_http_response_sent;

}

sub _http_response_sent {
my Perlbal::ClientHTTPBase $self = shift;

$Sself->{'service'}->run_hook ('end_web_request', $self);

_http_response_sent_orig(Sself);

Documentation
"Much more documentation needs to happen..."

http://www.danga.com/perlbal/

Active user group at:
http://groups.google.com/group/perlbal

http://www.danga.com/perlbal/
http://groups.google.com/group/perlbal

Releases

Peribal-1.60 - 24 Oct 2007/
Perlbal-1.70 - 09 Mar 2008
Perlbal-1.71 - 14 Sep 2008
Perlbal-1.72 - 22 Sep 2008

Latest version: Perlbal-1.73 - 05 Oct 2009

And from the release announcement
"We're aiming at doing a second release in 1-3 weeks..."

Thank you and any questions?

