

Load Balancing with Perlbal

Katherine Spice

MiltonKeynes.pm

15/10/09

What is Load Balancing?

Why and when might you use
Load Balancing?

● Capacity: you aren't able to meet the demand
on your service with a single server

● Resilience: you want to be able to cope with
the failure of a server

Considerations in choosing a
Load Balancer

Features Cost

➢ Type of traffic
➢ Layer 3 / 4 (IP/TCP) vs Layer 7 (application

specific, e.g. HTTP)

➢ Balancing algorithm
➢ random choice

➢ round robin

➢ manual weighting

➢ automated weighting based on
environment such as:

➢ reported load

➢ response time

➢ available connections

➢ Commercial Hardware:
F5 BigIP, Citrix NetScaler, Cisco ACE

Easy, fast, ££££ to £££,£££!

➢ Commercial Software:
Citrix VPX, Zeus ZXTM

up to ££,£££

➢ OSS:
LVS, Balance, Perlbal

Free

 So, if you're after a free, high performance,
software HTTP load balancer.....

Perlbal

First release was in 2005

Danga Interactive / Brad Fitzpatrick
http://www.danga.com/perlbal/

“needed internal redirects, tried to hack it onto 4 others load balancers, but
too painful. Easier to write our own, then once we had it we were able to
start doing tons more tricks and had a lot more visibility into what was going
on. Also our performance went up a ton, as Perlbal's load balancing is just
better than anything else we tried. (and we went through a ton of load
balancers)”

Background

http://www.danga.com/perlbal/

Perlbal

Perlbal is a Perl-based reverse proxy load
balancer and web server.

It processes hundreds of millions of requests a
day just for LiveJournal, Vox and TypePad and

dozens of other "Web 2.0" applications.

Features
● Maintains pool of connected backend connections to reduce turnover

● Intelligent load balancing based on what backend connections are free for
a new request.

● Almost everything can be configured or reconfigured on the fly without
needing to restart the software

● Has a high priority queue for sending requests through to backends
quickly (based on cookies or URI or host).

● Configurable header management before sending request to backend

● Internal redirection to file or URL(s) transparent to the client.

● Can verify that a backend connection is talking to a webserver and not just
the kernel's listen queue before sending client requests at it.

● Is extendable via plugins

Obtaining and Installing

Current version: 1.73

CPAN
http://search.cpan.org/dist/Perlbal/
perl -MCPAN -e shell
cpan-> install Perlbal

Ubuntu packages
https://edge.launchpad.net/~awmcclain/+archive

http://search.cpan.org/dist/Perlbal/
https://edge.launchpad.net/~awmcclain/+archive

Configuring

Default config file: /etc/perlbal/perlbal.conf

CREATE POOL my_apaches
 POOL my_apaches ADD 10.0.0.10:8080
 POOL my_apaches ADD 10.0.0.11:8080
 POOL my_apaches ADD 10.0.0.12
 POOL my_apaches ADD 10.0.0.13:8081

CREATE SERVICE balancer
 SET listen = 0.0.0.0:80
 SET role = reverse_proxy
 SET pool = my_apaches
 SET persist_client = on
 SET persist_backend = on
 SET verify_backend = on
ENABLE balance

Configuring alt.

CREATE POOL dynamic
 SET nodefile = conf/nodelist.dat

CREATE SERVICE balancer2
 SET listen = 0.0.0.0:81
 SET role = reverse_proxy
 SET pool = dynamic
ENABLE balancer2

Running

$./perlbal --help

Usage: perlbal [OPTS]
 --help This usage info
 --version Print perlbal release version
 --config=[file] Specify Perlbal config file
 (default: /etc/perlbal/perlbal.conf)
 --daemon Daemonize

$./perlbal -d

Managing

Add this to config file:

always good to keep an internal management port open:
CREATE SERVICE mgmt
 SET role = management
 SET listen = 127.0.0.1:60000
ENABLE mgmt

$ telnet 127.0.0.1:60000
pool my_apaches ADD 10.0.0.14

SHOW POOL

CREATE POOL new_apaches
pool new_apaches add 10.0.0.15
set balancer pool = new_apaches

Monitoring

Perlbal provides the following via the management interface, all in machine
readable format.

 * CPU usage (user, system)
 * Total requests served across all services
 * Requests service by individual backends
 * Perlbal uptime
 * All connected sockets
 * Outstanding connections to backends
 * Backends that have recently failed verification
 * Pending backend connections by service
 * Total of all socket states by socket type
 * Size (in seconds and number of connections) of all queues
 * State of reproxy engine (queued requests, outstanding requests,

backends)
 * Loaded plugins per service

Extending

Perlbal supports the concept of having per-service and global plugins that
can override many parts of request handling and behavior, via hooks.

Global hooks

Perlbal::register_global_hook('foo', sub { return 0; });

Service handler hooks

 $service->register_hook('bar', sub {
 # do something
 return 1;
 });

Service general hooks

Hooks

Examples:

HANDLER start_web_request Perlbal::ClientHTTP
When a 'web' service has gotten headers and is about to serve it... return
a true value to cancel the default handling of web requests.

HANDLER start_send_file Perlbal::ClientHTTPBase
Called when we've opened a file and are about to start sending it to the
user using sendfile. Return a true value to cancel the default sending.

HANDLER start_serve_request Perlbal::ClientHTTPBase, $uri_ref
Called when we're about to serve a local file, before we've done any
work. You can change the file served by modifying $uri_ref, and cancel the
process by returning a true value.

Plugin Config

In perlbal.conf

LOAD MyPlugin

CREATE SERVICE balancer
 SET listen = 0.0.0.0:80
 SET role = reverse_proxy
 SET pool = my_apaches
 SET persist_client = on
 SET persist_backend = on
 SET verify_backend = on
 SET plugins = MyPlugin
ENABLE balancer

Plugin Structure
package Perlbal::Plugin::MyPlugin;

use strict;
use warnings;

Called when we are loaded, do set up and global commands
here

sub load { return 1; }

Clear our global commands
sub unload { return 1; }

called when we're being added to a service
sub register { return 1; }

called when we're no longer active on a service
sub unregister { return 1; }

1;

Extracted from Perlbal::Plugin::Log at
http://www.eamondaly.com/perl/Perlbal/Log.pm

sub load {
 my $class = shift;

 Perlbal::register_global_hook('manage_command.logname', sub {
 my $mc = shift->parse(qr/^logname\s+(?:(\w+)\s+)?\s*=\s*(.+)\s*$/,
 "usage: LOGNAME [<service>] = <file>");

 my ($svc_name, $logname) = $mc->args;

 unless ($svc_name ||= $mc->{ctx}{last_created}) {
 return $mc->err("omitted service name not implied from context");
 }

 my $ss = Perlbal->service($svc_name);
 return $mc->err("Service '$svc_name' is not a web_server service")
 unless $ss && $ss->{role} eq "web_server";

my $fh;

$logname =~ s/^\"//;
$logname =~ s/\"$//;

if ($logname =~ s/^\|\s*//) {
 $fh = new IO::Pipe;
 eval { $fh->writer($logname) };

 # Note that the ability to capture any errors here will
 # depend largely on your OS and shell
 return $mc->err("Failed to open '$logname': $@")
 if $@;
}
else {
 $fh = new IO::File $logname, O_WRONLY|O_APPEND|O_CREAT;
 return $mc->err("Failed to open '$logname': $!")
 unless $fh;
}

$fh->autoflush(1);

$logobjs{$svc_name}->{'service'} = $ss;
$logobjs{$svc_name}->{'fh'} = $fh;

return $mc->ok;
 });

 return 1;
}

http://www.eamondaly.com/perl/Perlbal/Log.pm

sub register {
 my ($class, $svc) = @_;

 $svc->register_hook('Log', 'start_web_request', sub {
my Perlbal::ClientHTTP $client = shift;
$client->{'scratch'}->{'Log:start_web_request'} =

[gettimeofday()];

return 0;
 });

 $svc->register_hook('Log', 'end_web_request', sub {
&log_request(shift);

 return 0;
 });

 return 1;
}

sub log_request {
 my Perlbal::ClientHTTP $client = shift;
 my Perlbal::HTTPHeaders $req_headers = $client->{req_headers};
 my Perlbal::HTTPHeaders $res_headers = $client->{res_headers};

 my $start_time = delete $client->{'scratch'}->{'Log:start_web_request'};
 my $req_time = sprintf('%.3f', &tv_interval($start_time)) if $start_time;

 if ($client && $req_headers && $res_headers) {
my $svc = $client->{'service'};

if (my $fh = $logobjs{$svc->{'name'}}->{'fh'}) {
 my $auth;

 if ($req_headers->{'headers'}{'authorization'} =~ /^Basic (.+)/) {
($auth, undef) = split(/:/, decode_base64($1), 2)
 }

 my $referer = $req_headers->{'headers'}{'referer'};
 $referer =~ s/"/\\"/g;

 my $ua = $req_headers->{'headers'}{'user-agent'};
 $ua =~ s/"/\\"/g;

 printf $fh qq{%s - %s [%s] "%s" %d %d "%s" "%s" %s %s %s %s\n},
 $client->peer_ip_string,
 $auth || '-',
 strftime('%d/%b/%Y:%H:%M:%S %z', localtime),
 $req_headers->{'requestLine'},
 $res_headers->response_code,
 $res_headers->content_length,
 $referer || '-',
 $ua || '-',
 $req_headers->{'headers'}{'host'} || '-',
 $req_time || '-',
 $svc->name,
 $svc->role;
}
 }
}

If there's no existing hook for end_web_request in
http_response_sent, add one.
if (! exists &Perlbal::Service::end_web_request) {
 # Add dummy hook
 *Perlbal::Service::end_web_request = sub { };

 # Copy the original http_response_sent
 *_http_response_sent_orig =
*Perlbal::ClientHTTPBase::http_response_sent;

 # Override with our own, which includes the hook
 *Perlbal::ClientHTTPBase::http_response_sent =
*_http_response_sent;

}

sub _http_response_sent {
 my Perlbal::ClientHTTPBase $self = shift;

 $self->{'service'}->run_hook('end_web_request', $self);

 _http_response_sent_orig($self);
}

Documentation

"Much more documentation needs to happen..."

 http://www.danga.com/perlbal/

Active user group at:
http://groups.google.com/group/perlbal

http://www.danga.com/perlbal/
http://groups.google.com/group/perlbal

Releases

Perlbal-1.60 - 24 Oct 2007
Perlbal-1.70 - 09 Mar 2008
Perlbal-1.71 - 14 Sep 2008
Perlbal-1.72 - 22 Sep 2008

Latest version: Perlbal-1.73 - 05 Oct 2009

And from the release announcement
"We're aiming at doing a second release in 1-3 weeks..."

Thank you and any questions?

