

Data Warehousing with Perl

- An example operational schema
- Some typical reporting questions
- Answering with the operational database
- Introduction to Star schemas
- ETL : Extract, Transform and Load
- Answering with the Reporting database
- Things I have learnt

Professionalit

generating efficiency

An example operational schema

Typical reporting questions

- How many customers have we got?
- How many discs have we shipped?
- How many customers did we have on this package last month?
- What's the 28day retention of this package?
- Which titles do we have too many discs for?

Answering with the operational database

- How many customers have we got?
- SELECT COUNT(*) FROM customers WHERE status ='Y'
- How many discs have we shipped?
- SELECT COUNT(*) FROM dispatches WHERE date_shipped = NOW()
- How many customers did we have on this package last month?
- Add transaction tables for package changes
- What's the 28day retention of this package?
- Add transaction tables to customers
- Which titles do we have too many discs for?
- Probably pull the data into Perl to manipulate

Alternative: Reporting schema

- Take the operational data, and transform it
- Do this every night
- Time based series of data
- Much easier to report on
- Key aggregates already calculated
- Design the schema for ease of querying
- Use a Star schema

Introduction to Star schemas

- Fact tables
- Contain measurements - how many of this title are on the shelf
- Grain: eg one row per movie per day
- Dimension tables
- Data element - for example, static information about a movie
- Shared across fact tables
- Can contain data from more than one operational table - title, genre, classification
- Create surrogate keys for joins, not the operational PK/FK
- Don't snowflake
- Denormalise!

Professionalit

generating efficiency

Example schema for movies

Professionalit

generating efficiency

Example schema for customers

Tracking changes in dimensions

- Type 1: Just update the dimension
- Loses historic data
- Good for true facts, like movie title
- Type 2: Create a new dimension row
- Keeps history, more data
- Source Primary Key is not unique in the dimension
- Allows tracking of changes
- For example, price of a package
- There are other methods
- But I haven't used them

Extract, Transform and Load

- Extract from source database
- For example, take a snapshot
- Transform into data warehouse format
- Load into data warehouse
- Separate step, because this step will slow the Data Warehouse

Transform: an example

- Update the movie_dim dimension and get a mapping from movie_id to movie_key
- DBIc: update_or_create for type 1, find_or_create() for type 2
- Do calculations on source to get facts, indexed by movie_id
- Build movie_fact rows based on measures and keys

Answering with the Reporting database

- How many customers have we got?

SELECT COUNT(*)
FROM customer_fact
WHERE status='ACTIVE'
AND date $=$ NOW()

- How many discs have we shipped?

SELECT SUM(shipped)
FROM movie_fact
WHERE date $=$ NOW ()

Reporting: customer numbers

- How many customers did we have on this package last month?

SELECT COUNT(*) FROM customer_fact JOIN package_dim USING (package_key)
WHERE customer_fact.date = '2009-06-01'
AND package_dim.package_id $=23$

Reporting: retention

- What's the 28day retention of this package?

SELECT c2.STATUS, COUNT(*)
FROM customer_fact cf1
JOIN package_dim p ON p.package_key = cf1.package_key
JOIN customer_dim cd1 ON cf1.customer_key = cd1.customer_key
JOIN customer_dim2 cd2 ON cd2.customer_id = cd1.customer_id
JOIN customer_fact cf2 ON cd2.customer_key = cf2.customer_key WHERE cf1.date $=$ NOW() - INTERVAL 28 day AND cf2.date $=$ NOW()
AND p.package_id = ?

Reporting: disc usage

- Which titles do we have too many discs for?

SELECT movie_id, COUNT(*) AS num_days
FROM movie_fact
JOIN movie_dimension USING (movie_key)
WHERE discs_in_stock > 10
AND date BETWEEN '2009-02-01' AND '200902-28' HAVING num_days > 27

- Scans 1 row per movie per day, rather than all shipments and returns that might cross that time period

Things I have learnt

- Uses masses of disk space
- Eg, 1 row per customer (active and cancelled) per day, for a month, can be 100 million rows. 100 bytes a row $=$ 10Gb/month growth
- Instrument the ETL, to track individual steps for when it slows down
- Ensure you can rebuild a failed build
- Try and split the process into idempotent steps
- This makes rerunning a failed build easier

