

Memcached and Perl
Colin Bradford

Agenda

Introduction to caching
What is memcached
Example Uses
Gotchas

What is a cache?

A cache is “a collection of data duplicating
original values stored elsewhere or computed
earlier” according to Wikipedia
Store data under a key
Often implemented as an associative array
Limited in size, with an eviction policy

Why cache?

Performance increase
• Reduce disk IO and wait times
• Reduce the amount of calculation

Load decrease
• For databases, reduce the number of queries
• For servers, reduce the amount of CPU spent on

calculations

What is memcached

In-memory cache daemon, with a TCP
interface
Simple operations:
• set(key, data, expiry time)
• get(key)
• . . . plus some others

Evicts based on LRU (with caveats)
Open source server (BSD)
Clients for multiple languages
• Need to ensure data can be read across all

Key features

Client based key distribution to multiple
servers
• Servers do not need to communicate with each other

Server written in C, runs on most Unix
platforms
Very fast
• Non blocking

Simple text based network protocol
• Newer releases have a binary protocol as well

Accessing from Perl

use Cache::Memcached;

#Connect
my $cache = Cache::Memcached->new(servers => [“10.0.0.1:11211”,

“10.0.0.2:11211”]);

Set some data - $data can be a ref, as long as Storable can nfreeze it
$cache->set($key, $data, 3600); # 1 hour expiry

Get the data back
my $x = $cache->get($key);
or get multiple pieces simultaneously
my $hashref = $cache->get_multi($key1, $key2, $key3);

Example uses

LOVEFiLM
• 50ish page views/second
• Each is personalised
• Wide range of products (75,000+) and users (900,000+)

Cache uses
• Product data
• Customer data
• Editorial text

LOVEFiLM: Product data

Infrequently changing data
Expensive to compute
• multiple tables for actors, directors, related titles
• Data is manipulated before presentation

Frequently accessed
• Nearly every page has at least one product
• Home page has around 8
• Some pages have more than 30

Advantages of memcached

Central store of product data
• No duplication of data in memory on multiple servers

Fast access to perl data structure
Long expiry time (days)
• Product updates can be pushed to the central cache

Cache catalogue object
• Cache the result of computation, not the result of a

single database query

Customer data

Store regularly used data
• Customers rental list, account data

Each page view may go to a different web
server
• Local caches have poor hit rate

Updates to the cache data can be pushed to
the central cache
• Local cache would be stale

Short expiry times
• Only needed for the length of a visit

Editorial text

Text on site can be edited by editorial team
Central cache can be updated
• Long expiry times, but very quick updates

Reduces database load
Can store the results of processing
• Turning movie titles into links
• Checking for trailers

Performance

More than 10,000 cache fetches per second
Single threaded daemon
Gigabit network connection
7.5 Gb cache
> 95% hit ratio (across all keys)

Deployment

“Typical” deployment puts memcached on
web hosts, using spare memory
Very low CPU, can run anywhere that has
spare memory
Client hashing algorithm determines server
to use for a specific key

Deployment in code

Need to cache at the appropriate level
• Caching individual database queries is easy

– May not give best performance increase
– Hard to get cache invalidation correct

• Caching the end result may give lower hit rates
• Caching partial results, but still doing some computation

may yield good results
• Test and Benchmark!

Use a namespace separator in the key, to
avoid clashes

Alternative APIs

Use callbacks to calculate data on a miss

Cache->retrieve($key, $expiry, \&callback, @callbackdata);

Can instrument cache misses by namespace
Can time data calculation, to do a “cost of
miss” calculation
Can instrument cache writes that are never
read

Gotchas

Can’t store undef
• get returns undef on a miss, so you can’t store that a

key doesn’t exist

1Mb limit (as standard) on objects
• Data size (once frozen) must be under 1Mb. set doesn’t

warn you if it’s bigger – silently fails

Storable.pm problems with mixed 32/64bit
environments
• Older versions of Storable didn’t cope with a mixed

environment

Gotchas

A failed cache will timeout (eventually)
• The timeout is configurable, but Cache::Memcached

didn't correctly mark servers that are down

Beware of the cost of computing data if the
cache is down
• A down cache will cause all data that it stores to be

recalculated every time it’s needed

Beware of context switches
• Running memcached on web servers causes context

switches between Apache and memcached
• This slows page build times (measurably for LOVEFiLM)

Gotchas

“Stale Slab” problem
• memcached allocates a slab of memory as needed
• A slab holds a single size of object and are not reclaimed
• memcached eventually hits the configured limit of slabs
• If the size of your objects changes, memcached many

not have the right number of slabs for that size of object
– and the hit rate goes down

Tips

It’s a cache – it will lose data
• so make sure you can recreate anything in the cache

Think about and test cache failures
• Maybe a main/standby method works better for a use

case

Monitor hit rates
• track hit rates (ganglia), and investigate changes

Don't use set and get as method names
• Use store and retrieve, or similar – less likely to confuse

in code

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

