Memcached and Perl
Colin Bradford

PDrofessional IT

- ﬂ,:,. generating efficiency

it

oI
o
N a..'i'jl”.;‘.rl.l'r

Professiona

generating efficieiga

Agenda

» Introduction to caching
» What is memcached

» Example Uses

» Gotchas

generating efficieiga

What is a cache?

» A cache is "a collection of data duplicating
original values stored elsewhere or computed
earlier” according to Wikipedia

» Store data under a key
» Often implemented as an associative array
» Limited in size, with an eviction policy

Professionaili

generating efficieiga

Why cache?

» Performance increase
e Reduce disk IO and wait times
e Reduce the amount of calculation

» Load decrease
e For databases, reduce the number of queries

e For servers, reduce the amount of CPU spent on
calculations

Professionail

AN LUV ELURR AR]

generating efficieiga

What is memcached

» In-memory cache daemon, with a TCP
interface

» Simple operations:

e set(key, data, expiry time)

* get(key)

e ... plus some others
» Evicts based on LRU (with caveats)
» Open source server (BSD)

» Clients for multiple languages
e Need to ensure data can be read across all

Professionai

generating efficieiga

Key features

» Client based key distribution to multiple
servers
e Servers do not need to communicate with each other

» Server written in C, runs on most Unix
platforms

» Very fast
e Non blocking

» Simple text based network protocol
e Newer releases have a binary protocol as well

Professionaili

generating efficieiga

Accessing from Perl

use Cache::Memcached;

#Connect

my $cache = Cache::Memcached->new(servers => ["10.0.0.1:11211",
“10.0.0.2:11211"]);

Set some data - $data can be a ref, as long as Storable can nfreeze it
$cache->set($key, $data, 3600); # 1 hour expiry

Get the data back

my $xX = $cache->get($key);

or get multiple pieces simultaneously

my $hashref = $cache->get_multi($keyl, $key2, $key3);

Professionaili

generating efficieiga

Example uses

» LOVEFILM

e 50ish page views/second
e Each is personalised
e Wide range of products (75,000+) and users (900,000+)

» Cache uses
e Product data

e Customer data
e Editorial text

Professiona

AN LUV ELURR AR]

generating efficieiga

LOVEFILM: Product data

» Infrequently changing data

» Expensive to compute
e multiple tables for actors, directors, related titles
e Data is manipulated before presentation

» Frequently accessed
e Nearly every page has at least one product
e Home page has around 8
e Some pages have more than 30

Professiona

AN LUV ELURR AR]

generating efficieiga

Advantages of memcached

» Central store of product data
e No duplication of data in memory on multiple servers

» Fast access to perl data structure
» Long expiry time (days)
e Product updates can be pushed to the central cache

» Cache catalogue object

e Cache the result of computation, not the result of a
single database query

Professiona

AN LUV ELURR AR]

generating efficieiga

Customer data

» Store regularly used data
e Customers rental list, account data

» Each page view may go to a different web
server
e Local caches have poor hit rate

» Updates to the cache data can be pushed to
the central cache
e Local cache would be stale

» Short expiry times
e Only needed for the length of a visit

Professionai

AN LUV ELURR AR]

generating efficieiga

Editorial text

» Text on site can be edited by editorial team

» Central cache can be updated
e Long expiry times, but very quick updates

» Reduces database load

» Can store the results of processing
e Turning movie titles into links
e Checking for trailers

Professionail

AN LUV ELURR AR]

generating efficieiga

Performance

» More than 10,000 cache fetches per second
» Single threaded daemon

» Gigabit network connection

» 7.5 Gb cache

» > 959% hit ratio (across all keys)

Professiona

AN LUV ELURR AR]

generating efficieiga

Deployment

» “Typical” deployment puts memcached on
web hosts, using spare memory

» Very low CPU, can run anywhere that has
spare memory

» Client hashing algorithm determines server
to use for a specific key

Professiona

AN LUV ELURR AR]

generating efficiejpa

Deployment in code

» Need to cache at the appropriate level

e Caching individual database queries is easy
- May not give best performance increase
- Hard to get cache invalidation correct

e Caching the end result may give lower hit rates

e Caching partial results, but still doing some computation
may Yield good results

e Test and Benchmark!

» Use a namespace separator in the key, to
avoid clashes

Professiona

generating efficieg

Alternative APIs
» Use callbacks to calculate data on a miss

Cache->retrieve($key, $expiry, \&callback, @callbackdata);

» Can instrument cache misses by nhamespace

» Can time data calculation, to do a “cost of
miss” calculation

» Can instrument cache writes that are never
read

Professiona

AN LUV ELURR AR]

generating efficieiga

Gotchas

» Can’t store undef

e get returns undef on a miss, so you can't store that a
key doesn’t exist

» 1Mb limit (as standard) on objects

e Data size (once frozen) must be under 1Mb. set doesn’t
warn you if it's bigger - silently fails

» Storable.pm problems with mixed 32/64bit
environments

e Older versions of Storable didn't cope with a mixed
environment

Professiongl

AN LUV ELURR AR]

generating efficieiga

Gotchas

» A failed cache will timeout (eventually)

e The timeout is configurable, but Cache::Memcached
didn't correctly mark servers that are down

» Beware of the cost of computing data if the

cache is down

e A down cache will cause all data that it stores to be
recalculated every time it's needed

» Beware of context switches

e Running memcached on web servers causes context
switches between Apache and memcached

e This slows page build times (measurably for LOVEFiLM)

Professionail

AN LUV ELURR AR]

generating efficieiga

Gotchas

» “Stale Slab” problem

e memcached allocates a slab of memory as needed
e A slab holds a single size of object and are not reclaimed
e memcached eventually hits the configured limit of slabs

o If the size of your objects changes, memcached many
not have the right number of slabs for that size of object
— and the hit rate goes down

Professiona

AN LUV ELURR AR]

generating efficieiga

Tips

» It's a cache - it will lose data
e so make sure you can recreate anything in the cache

» Think about and test cache failures

e Maybe a main/standby method works better for a use
case

» Monitor hit rates
e track hit rates (ganglia), and investigate changes

» Don't use set and get as method names

o Use store and retrieve, or similar — less likely to confuse
in code

rofessional iT

P i i
Y :.,gsneratmg efficiency 7
/) &

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

