Memcached and Perl
Colin Bradford

PDrofessional IT

- ﬂ,:,. generating efficiency

it

oI
o
N a..'i'jl”.;‘.rl.l'r

ProfessionaliT

generating efficiency

Agenda

» What is memcached
» Example Uses

» Deployment

» Gotchas

ProfessionaliT

generating efficiency

What is memcached

» In-memory cache daemon
» Simple operations:

e set(key, data, expiry time)

* get(key)

e ... plus some others

ProfessionaliT

generating efficiency

Key features

» Client based key distribution to multiple servers
e Servers do not need to communicate with each other

» Server written in C, runs on most Unix platforms
» Very fast (all operations in O(1))
» Simple text based network protocol

ProfessionaliT

generating efficiency

Accessing from Perl

use Cache::Memcached;

#Connect

my $cache = Cache::Memcached->new(servers => [“10.0.0.1:11211",
“10.0.0.2:112117));

Set some data - $data can be a ref, as long as Storable can nfreeze it
$cache->set($key, $data, 3600); # 1 hour expiry

Get the data back

my $x = $cache->get($key);

or get multiple pieces simultaneously

my $hashref = $cache->get_multi($keyl, $key2, Skey3);

ProfessionaliT

generating efficiency

Example uses

» LOVEFILM
® Product data
e Customer data
e Editorial text

ProfessionaliT

generating efficiency

LOVEFILM: Product data

» Infrequently changing data

» Expensive to compute
e multiple tables for actors, directors, related titles

» Frequently accessed
® every page has at least one product
® home page has 8
® some pages have more than 30

ProfessionaliT

generating efficiency

Advantages of memcached

» Central store of product data
e no duplication of data in memory on multiple servers

» Fast access to perl data structure
» Long expiry time (days)
e product updates can be pushed to the central cache

ProfessionaliT

generating efficiency

Customer data

» Store regularly used data
e eg Customers rental list, account data

» Each page view may go to a different web server,
so local caches have poor hit rate

» Updates to the cache data can be pushed to the
central cache; a local cache would be stale

» Short expiry times - only needed for the length
of a visit

ProfessionaliT

generating efficiency

Editorial text

» Text on homepage can be edited by editorial
team

» Central cache can be updated - so long expiry
times, but very quick updates

» Reduces database load

ProfessionaliT

generating efficiency

Deployment

» “Typical” deployment puts memcached on web
hosts, using spare memory

» Very low CPU, can run anywhere that has spare
memory

» Client hashing algorithm determines server to
use for a specific key

ProfessionaliT

generating efficiency

Gotchas

» Can’t store undef

e get returns undef on a miss, so you can’t store that a key
doesn’t exist

» 1Mb limit (as standard) on objects
e data size (once frozen) must be under 1Mb. ->set doesn’t
warn you if it’s bigger
» Storable.pm problems with mixed 32/64bit
environments

e Older versions of Storable didn’t cope with a mixed
environment

ProfessionaliT

generating efficiency

Gotchas

» A failed cache will timeout (eventually)

e The timeout is configurable, but Cache::Memcached
doesn’t correctly mark servers that are down.

» Beware of the cost of computing data if the

cache is down

e A down cache will cause all data that it stores to be
recalculated every time it’s needed.

» Beware of context switches

® Running memcached on web servers causes context
switches between Apache and memcached

e This slows page build times (measurably for LOVEFiLM)

ProfessionaliT

generating efficiency

Gotchas

» “Stale Slab” problem

e memcached allocates a slab of memory as needed

e A slab holds a single size of object and are not reclaimed
e memcached eventually hits the configured limit of slabs
o

If the size of your objects changes, memcached many not
have the right number of slabs for that size of object - and
the hit rate goes down

ProfessionaliT

generating efficiency

Tips

» It’s a cache - it will lose data
e so make sure you can recreate anything in the cache

» Think about and test cache failures
e Maybe a main/standby method works better for a use case

» Monitor hit rates
e track hit rates (ganglia), and investigate changes

rofessional iT

P i i
Y :.,gsneratmg efficiency 7
/) &

