

Memcached and Perl
Colin Bradford

Agenda

What is memcached
Example Uses
Deployment
Gotchas

What is memcached

In-memory cache daemon
Simple operations:
• set(key, data, expiry time)
• get(key)
• . . . plus some others

Key features

Client based key distribution to multiple servers
• Servers do not need to communicate with each other

Server written in C, runs on most Unix platforms
Very fast (all operations in O(1))
Simple text based network protocol

Accessing from Perl

use Cache::Memcached;

#Connect
my $cache = Cache::Memcached->new(servers => [“10.0.0.1:11211”,

“10.0.0.2:11211”]);

Set some data - $data can be a ref, as long as Storable can nfreeze it
$cache->set($key, $data, 3600); # 1 hour expiry

Get the data back
my $x = $cache->get($key);
or get multiple pieces simultaneously
my $hashref = $cache->get_multi($key1, $key2, $key3);

Example uses

LOVEFiLM
• Product data
• Customer data
• Editorial text

LOVEFiLM: Product data

Infrequently changing data
Expensive to compute
• multiple tables for actors, directors, related titles

Frequently accessed
• every page has at least one product
• home page has 8
• some pages have more than 30

Advantages of memcached

Central store of product data
• no duplication of data in memory on multiple servers

Fast access to perl data structure
Long expiry time (days)
• product updates can be pushed to the central cache

Customer data

Store regularly used data
• eg Customers rental list, account data

Each page view may go to a different web server,
so local caches have poor hit rate
Updates to the cache data can be pushed to the
central cache; a local cache would be stale
Short expiry times – only needed for the length
of a visit

Editorial text

Text on homepage can be edited by editorial
team
Central cache can be updated – so long expiry
times, but very quick updates
Reduces database load

Deployment

“Typical” deployment puts memcached on web
hosts, using spare memory
Very low CPU, can run anywhere that has spare
memory
Client hashing algorithm determines server to
use for a specific key

Gotchas

Can’t store undef
• get returns undef on a miss, so you can’t store that a key

doesn’t exist

1Mb limit (as standard) on objects
• data size (once frozen) must be under 1Mb. ->set doesn’t

warn you if it’s bigger

Storable.pm problems with mixed 32/64bit
environments
• Older versions of Storable didn’t cope with a mixed

environment

Gotchas

A failed cache will timeout (eventually)
• The timeout is configurable, but Cache::Memcached

doesn’t correctly mark servers that are down.

Beware of the cost of computing data if the
cache is down
• A down cache will cause all data that it stores to be

recalculated every time it’s needed.

Beware of context switches
• Running memcached on web servers causes context

switches between Apache and memcached
• This slows page build times (measurably for LOVEFiLM)

Gotchas

“Stale Slab” problem
• memcached allocates a slab of memory as needed
• A slab holds a single size of object and are not reclaimed
• memcached eventually hits the configured limit of slabs
• If the size of your objects changes, memcached many not

have the right number of slabs for that size of object – and
the hit rate goes down

Tips

It’s a cache – it will lose data
• so make sure you can recreate anything in the cache

Think about and test cache failures
• Maybe a main/standby method works better for a use case

Monitor hit rates
• track hit rates (ganglia), and investigate changes

Thank you

